AGH w Krakowie

Leak consequences and risk assessment of pipelines transporting hydrogen-natural gas blends. A case study

Skutki wycieku i ocena ryzyka dla gazociągów transportujących mieszaniny wodoru z gazem ziemnym. Studium przypadku

DOI: 10.15199/62.2025.9.5

Dokonano oceny wypływu i rozproszenia gazu z rurociągu DN200 przesyłającego: (i) metan (uproszczenie dla gazu ziemnego), (ii) mieszaninę metan-wodór (o zawartości wodoru 10%) oraz (iii) wodór (100%). Zmienny w czasie wypływ (uwolnienie) gazu przez wyłomy o średnicach 10, 30 i 50 mm zasymulowano w programie DNV Phast. W symulacji przyjęto automatyczne odcięcie sekcji w czasie 30 s oraz wiatr o prędkości 1,5 m/s. Jako miary zagrożenia przyjęto odległość dla dolnej granicy wybuchowości (DGW) oraz do 0,5DGW. Przebiegi spadku ciśnienia dla metanu i mieszaniny z 10% H, były zbliżone, a dla czystego wodoru spadek ciśnienia następował najszybciej. W przypadku wyłomu o średnicy 50 mm początkowy wydatek masowy wynosił ok. 3 kg/s (CH₄), ok. 2,9 kg/s (90% CH₄ + 10% H₂) oraz ok. 1 kg/s (H₂). Odległości maksymalne w kierunku wiatru, dla których osiągnięto stężenie DGW wynosiły ok. 2 m dla metanu, ok. 2,2 m dla mieszaniny 90% CH₄ + 10% H₅ oraz ok. 7 m dla wodoru. Analogiczne odległości dla 0,5DGW były mniej więcej dwukrotnie większe (ok. 5 m dla metanu i ok. 13 m dla wodoru). Dodatek 10% wodoru do metanu nie zwiększył rozmiaru strefy zagrożenia wybuchem w badanych warunkach. Szerszy zakres palności wodoru oraz mała energia zapłonu zwiększają prawdopodobieństwo zapłonu w pobliżu źródła wycieku. Wyniki wykazały, że rurociągi przesyłające gaz ziemny z 10-proc. domieszką wodoru mogą osiągnąć poziom ryzyka porównywalny z tym dla przesyłu gazu ziemnego. Jest to możliwe pod warunkiem szybkiego odcięcia dopływu gazu w przypadku wykrycia nieszczelności poprzez system detekcji wodoru, zapewnienia wentylacji oraz monitorowania stanu materiałów.

Słowa kluczowe: mieszanina gazu ziemnego z wodorem, gazociąg gazu ziemnego, modelowanie dyspersji, ocena ryzyka, program DNV Phast

The discharge and dispersion from a buried DN200 pipeline carrying MeH, a MeH-H, blend, or H, were assessed. Time-dependent releases through 10-, 30- and 50-mm breaches were simulated in DNV Phast software with 30 s automatic isolation, neutral stability, and 1.5 m/s wind. Hazard metrics were distances to the lower explosive limit (LEL) and to 0.5 LEL. Discharge for MeH and the 10% H, blend were similar, while H₂ depressurized was fastest. For a 50 mm breach, initial mass flows were ~3 kg/s (MeH), ~2.9 kg/s (10% H₂), and ~1 kg/s (H₂). Maximum downwind LEL distances were ~2 m (MeH), ~2.2 m (90% MeH/10% H,), and ~7 m (H₂). The 0.5 LEL distances were roughly doubled (~5 m for MeH and ~13 m for H₂). Thus, a 10% H₂ addn. did not enlarge the flammable footprint under the tested conditions, though H, wider flammability range and low ignition energy raise ignition likelihood near the source. The pipelines transporting natural gas with 10% H, can achieve risk levels comparable to MeH when rapid isolation, reliable leak detection (including H₂ sensing), ventilation, and materials monitoring were

Keywords: natural gas/hydrogen mixture, natural gas pipeline, dispersion modeling, risk assessment, DNV Phast software

Dr inż. Szymon KUCZYŃSKI (ORCID: 0000-0001-8261-4417) w roku 2007 ukończył studia na Wydziale Fizyki i Informatyki Stosowanej Akademii Górniczo-Hutniczej w Krakowie. Jest pracownikiem badawczo-dydaktycznym w Katedrze Inżynierii Gazowniczej Wydziału Wiertnictwa, Nafty i Gazu AGH w Krakowie. Specjalność – procesy technologiczne w gazowniczwie ziemnym, magazynowanie energii, technologia CCS oraz monitoring *in-situ* jakości płynów złożowych z wykorzystaniem spektroskopii Ramana.

Szymon KUCZYŃSKI, PhD (ORCID: 0000-0001-8261-4417), in 2007 he graduated from the Faculty of Physics and Applied Computer Science at the AGH University of Science and Technology in Krakow. He is a research and teaching employee at the

Department of Gas Engineering, Faculty of Drilling, Oil, and Gas, AGH in Krakow. Specialty – technological processes in natural gas, energy storage, CCS technology, and in-situ monitoring of reservoir fluid quality using Raman spectroscopy.

* Address for correspondence/Adres do korespondencji:

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, al. Adama Mickiewicza 30, 30-059 Kraków, tel.: (12) 617-22-20, e-mail: szymon.kuczynski@agh.edu.pl

The urgent need for energy transformation of national economy has spurred interest in blending hydrogen into natural gas networks. Hydrogen produced from renewable sources can be injected into natural gas pipelines for transportation and storage of intermittent renewable energy in the gas grid. This strategy is backed by industrial initiatives and EU policy. For example, the EU Fuel Cells and Hydrogen Joint Undertaking (FCH JU) has emphasized injecting renewable hydrogen into gas networks as a key to integrating renewable energy. Blending up to about 20% hydrogen by volume into natural gas has been demonstrated as feasible in several trials (i.e. the UK HyDeploy project), with no adverse effects on end-use appliances. However, introducing hydrogen into pipelines

Pilna potrzeba transformacji energetycznej gospodarki krajowej spowodowała wzrost zainteresowania zatłaczaniem wodoru do sieci gazu ziemnego. Wodór wytwarzany ze źródeł odnawialnych może być zatłaczany do gazociągów w celu transportu i magazynowania okresowo dostępnej energii odnawialnej w sieci gazowej. Ta strategia jest wspierana przez inicjatywy przemysłowe i politykę UE. Na przykład wspólne przedsięwzięcie UE w dziedzinie ogniw paliwowych i wodoru (FCH JU) podkreśla znaczenie wprowadzania wodoru pochodzącego ze źródeł odnawialnych do sieci gazu ziemnego jako kluczowego elementu integracji energii odnawialnej. W kilku badaniach (np. w ramach brytyjskiego projektu HyDeploy) wykazano, że dodanie wodoru do gazu ziemnego w ilości do ok. 20% obj. jest wykonalne i nie ma negatywnego wpływu na urządzenia końcowe. Jednak wprowadzenie wodoru do rurociągów wiąże się również z wyzwaniami dotyczącymi bezpieczeństwa, które należy dokładnie ocenić.

Światowy i europejski przemysł gazowy aktywnie ocenia infrastrukturę "gotową na wodór". Wiele krajów ustanowiło dobrowolne limity H₂ (5–20% obj.) w oczekiwaniu na dalsze dane. W UE nie ma obecnie jednolitych limitów prawnych dotyczących zawartości wodoru w gazie ziemnym, a w Polsce nie ma jeszcze jednoznacznych przepisów określających dopuszczalne poziomy zawartości H₂. Zamiast tego limit jest pośrednio narzucany przez wymagania dotyczące jakości gazu (np. wartość opałowa i liczba Wobbego). Maksymalna zawartość w granicach 15–20% H₂ nadal spełnia standardowe specyfikacje dotyczące gazu ziemnego. Dodanie wodoru może wpływać na materiały i urządzenia rurociągowe, ale zaobserwowano również potencjalne korzyści, takie jak zmniejszenie spadku ciśnienia wraz ze zwiększeniem odległości^{1–3)}. Ostatnie projekty pilotażowe realizowane w Polsce przyczyniają się do zwiększenia gotowości: w 2024 r. powstał 7-kilometrowy rurociąg dystrybucyjny (Jelenia Góra–Piechowice), który uzyskał certyfikat na transport gazu ziemnego z dodatkiem do 20% wodoru i jest pierwszym rurociągiem w kraju przystosowanym do transportu wodoru⁴⁾. Świadczy to o rosnącym zaufaniu przemysłu. Jednak pełne wdrożenie będzie wymagało szczegółowego zbadania zagrożeń dla bezpieczeństwa.

Dodatek wodoru musi być również uwzględniony w kontekście obowiązujących przepisów dotyczących bezpieczeństwa. W UE rurociągi transportujące mieszanki gazowe nadal podlegają dyrektywie Seveso III dotyczącej kontroli zagrożeń poważnymi awariami, wdrożonej w Polsce na mocy ustawy o ochronie środowiska^{5, 6)}. Obiekty przetwarzające wodór klasyfikuje się wg progów ilościowych odnoszonych do maksymalnej ilości wodoru, jaka może być jednocześnie obecna w zakładzie (w instalacjach i magazynach łącznie); przy ilości ≥ 5 t H₂ − zakład o zwiększonym ryzyku (ZZR), a przy ilości > 50 t H₂ − zakład o dużym ryzyku (ZDR). Przepisy te wymagają analizy ryzyka, planów awaryjnych i zapewnienia środków bezpieczeństwa, jeśli znacznie zwiększy się ilość wodoru w sieciach gazowych. Obecnie szczegółowe normy techniczne

also poses safety challenges that has to be rigorously assessed.

Worldwide and European gas industries are actively evaluating "hydrogen-ready" infrastructure. Many countries set voluntary limits (5–20% H, by vol.) pending further data. In the EU, there is currently no single legal limit on hydrogen content in gas, and in Poland no explicit regulations yet specify allowable H, blend levels. Instead, the limit is indirectly imposed by gas quality requirements (e.g. calorific value and Wobbe index). The maximum content 15-20% H, meets still the standard natural gas specifications. Addition of hydrogen can affect pipeline materials and devices but also observed potential benefits like reduced pressure drop over distance¹⁻³⁾. Recent pilot projects in Poland are improving readiness: in 2024 a 7 km distribution pipeline (Jelenia Góra–Piechowice), which was certified for up to 20% hydrogen, marking the first hydrogen-ready pipeline in the country⁴⁾. This demonstrates growing industrial confidence. Yet full deployment will require addressing the safety risks in detail.

Hydrogen admixture must also be addressed within existing safety regulations. In the EU, blended gas pipelines still fall under the Seveso III Directive for control of major-accident hazards, implemented in Poland via the Environmental Protection Law^{5, 6)}. Hydrogen processing facilities are classified according to quantitative thresholds relating to the maximum amount of hydrogen that can be present in the facility at one time (in installations and storage facilities combined); for quantities $\geq 5 t H$, - an "increased risk" facility, and for quantities ≥ 50 t H_{γ} – a "high risk" facility. These regulations necessitate risk analyses, emergency plans, and community safety measures if hydrogen blending substantially increases the inventory of hydrogen in gas networks. At present, detailed technical standards specific to hydrogen blending in existing natural gas pipelines are limited. Polish law does not yet provide hydrogen-specific pipeline design rules, and industry is guided by general standards and best practices. Some relevant standards give design and operation guidelines to minimize fire and explosion hazards^{7,8)}. Additionally, industrial groups have issued supplements for hydrogen to classify hazardous areas in gas installations with $H_2^{9, 10}$. These norms, while not specific to pipeline transport of blended gas, provide a framework for risk assessment. The study contributes to this context by modeling a representative pipeline release scenario to evaluate the dispersion and explosion risk of methane--hydrogen mixtures, thereby informing safety feasibility under realistic conditions.

Key risks identified

Flammability and explosivity

Transporting hydrogen-blended natural gas through existing pipelines presents several safety and risk challeng-

dotyczące mieszania wodoru w istniejących rurociągach gazu ziemnego są ograniczone. Polskie prawo nie zawiera jeszcze przepisów dotyczących projektowania rurociągów przeznaczonych do transportu wodoru, a branża kieruje się ogólnymi normami i najlepszymi praktykami. Niektóre normy zawierają wytyczne dotyczące projektowania i eksploatacji, mające na celu zminimalizowanie zagrożenia pożarowego i wybuchowego^{7, 8)}. Ponadto grupy przemysłowe wydały dokumenty uzupełniające, dotyczące wodoru w celu klasyfikacji obszarów niebezpiecznych na instalacjach gazowych zawierających wodór^{9, 10)}. Normy te, choć nie dotyczą konkretnie transportu mieszanin gazowych rurociągami, stanowią podstawę do oceny ryzyka. Przeprowadzone badania wpisują się w ten kontekst, poprzez modelowanie reprezentatywnego scenariusza wycieku na gazociągu w celu oceny poziomu dyspersji oraz ryzyka wybuchu mieszaniny metanu z wodorem, dostarczając tym samym wiedzy na temat wykonalności w zakresie bezpieczeństwa w możliwych do wystąpienia warunkach.

Kluczowe zidentyfikowane ryzyka

Palność i wybuchowość

Transport gazu ziemnego z domieszką wodoru istniejącymi rurociągami wiąże się z kilkoma wyzwaniami w zakresie bezpieczeństwa i ryzyka ze względu na wyjątkowe właściwości wodoru. Wyższa palność i wybuchowość wodoru w porównaniu z gazem ziemnym zwiększa ryzyko wypadków. Na intensywność promieniowania i nadciśnienie wybuchu wpływa proporcja domieszki wodoru, przy czym zwiększony udział wodoru powoduje zwiększenie ryzyka^{11–13)}. W środowisku wietrznym, gaz ziemny z domieszką wodoru ma tendencję do gromadzenia się w pobliżu powierzchni ziemi, co zwiększa ryzyko wybuchu¹³⁾. Wodór ma inne właściwości fizyczne i chemiczne niż gaz ziemny, takie jak mniejszy rozmiar cząsteczki i mniejsza gęstość, co wymaga wyższych ciśnień roboczych, aby dostarczyć taką samą ilość energii jak gaz ziemny. Ponadto niewielki rozmiar cząsteczki wodoru i niższa energia zapłonu sprawiają, że jest on bardziej podatny na przenikanie przez materiały rurociągów i uszczelnienia, co prowadzi do ich degradacji, a jego szerszy zakres palności sprawia, że stanowi zagrożenie dla bezpieczeństwa w przypadku wycieku^{14, 15)}. Wodór ma znacznie szerszy zakres palności i łatwiej się zapala niż metan (tabela). Spala się również szybciej, co może powodować silniejsze fale ciśnieniowe w przypadku zapłonu.

Wyciek i pęknięcie

Kruchość wodorowa, korozja i wady konstrukcyjne mogą prowadzić do wycieku lub pęknięć gazociągów, stwarzając poważne zagrożenie dla bezpieczeństwa i środowiska^{16–18}). Charakterystyka przepływu wycieku zmienia się wraz z wielkością domieszki wodoru, przy czym większe zawartości wodoru prowadzą do mniejszej prędkości wycieku masowego, ale potencjalnie bardziej niebezpiecznych warunków ze względu na zwiększone stężenie wodoru^{16, 19, 20}).

Table. Key flammability and ignition properties of methane (CH $_{\! 4}\!$) and hydrogen (H $_{\! 2}\!$)

Tabela. Podstawowe właściwości palności i zapłonu dla metanu i wodoru

Property/Właściwość	CH ₄	$\mathrm{H_2}$
Lower explosive limit (LEL), % vol. in air/ Dolna granica wybuchowości (DGW), % obj. w powietrzu	5	4
Upper explosive limit (UEL), % vol. in air/ Górna granica wybuchowości (GGW), % obj. w powietrzu	15	~75
Minimum ignition energy/Minimalna energia zapłonu, mJ	~0.28	~0.02
Flame propagation speed/Prędkość rozprzestrzeniania się płomienia, m/s	~0.4	3–4

es due to the unique properties of hydrogen. Hydrogen's higher flammability and explosivity compared to natural gas increase the risk of accidents. The radiation intensity and explosion overpressure are influenced by the hydrogen blending ratio, with higher ratios leading to increased risks^{11–13)}. In windy environments, hydrogen-blended natural gas tends to accumulate near the ground, increasing explosion risks¹³⁾. Hydrogen has different physical and chemical properties from natural gas, such as a smaller size and lower density, which require higher operating pressures to deliver the same amount of energy as natural gas. Additionally, hydrogen's small molecular size and lower ignition energy make it more likely to permeate through pipeline materials and seals, leading to degradation, and its wider flammability limits make it a safety hazard when leaks occur^{14, 15)}. Hydrogen has a much wider flammable range and ignites more easily than methane (Table). It also burns faster, which can produce stronger pressure waves if ignited.

Leakage and rupture

Hydrogen embrittlement, corrosion, and construction flaws can lead to pipeline leakage or rupture, posing significant threats to safety and the environment^{16–18}. The leakage flow characteristics change with hydrogen blending, with higher hydrogen ratios leading to lower mass leakage velocity but potentially more hazardous conditions due to increased hydrogen concentration^{16, 19, 20)}. The dominant effects associated with leakage of any flammable gas from pipelines are thermal radiation by a sustained fire and overpressure by a gas cloud explosion. In general, the fire hazard following the explosion has a slightly greater effect. Risk assessments have shown that the hazard distance for hydrogen gas pipelines is about 15% less than that for natural gas, while there is some limitation in energy transmission capacity comparing to natural gas¹⁵⁾.

Material degradation

Hydrogen presence in the natural gas can result in embrittlement and fatigue damage in pipeline materials, comproNajważniejsze skutki wycieku jakiegokolwiek gazu palnego z rurociągów to promieniowanie cieplne spowodowane długotrwałym pożarem oraz nadciśnienie spowodowane wybuchem chmury gazu. Zasadniczo zagrożenie pożarowe po wybuchu ma nieco gorsze skutki. Oceny ryzyka wykazały, że wpływ odległości na zagrożenie dla rurociągów wodorowych jest o ok. 15% mniejszy niż w przypadku gazu ziemnego, natomiast zdolność przesyłu energii jest ograniczona w porównaniu z gazem ziemnym¹⁵).

Degradacja materiałów

Obecność wodoru w gazie ziemnym może powodować kruchość i uszkodzenia zmęczeniowe materiałów rurociągów, zagrażając ich trwałości. Dotyczy to również stali o wysokiej wytrzymałości oraz spoin^{21, 22)}. Dobór materiałów rurociągów do przesyłu mieszanin z wodorem wymaga dokładnej oceny, aby zapobiec degradacji i zapewnić bezpieczną eksploatację^{18, 21, 22)}. Dostosowanie rurociągów gazu ziemnego w celu transportu czystego wodoru lub mieszanek z gazem ziemnym zwiększa ryzyko kruchości wodorowej i stwarza potencjalne problemy związane z trwałością, takie jak pęknięcia na rurociągu. Zastosowanie inhibitorów (tlen, tlenek węgla, inne) może hamować absorpcję wodoru przez materiał i zostało zaproponowane w celu zmniejszenia ryzyka kruchości wodorowej. Jednakże, jeśli wpływ tych inhibitorów na korozję wewnętrzną nie zostanie dokładnie oceniony, mogą wystąpić niezamierzone konsekwencje²³).

Część badawcza

Metodyka badań

Określenie scenariusza

Rozważano zależne od czasu, przypadkowe uwolnienie gazu ze stalowego rurociągu przesyłowego DN200

mising their integrity. This is particularly concerning for high-strength steels and welds^{21, 22)}. The compatibility of pipeline materials with hydrogen needs thorough evaluation to prevent degradation and ensure safe operation^{18, 21, 22)}. Converting natural gas pipelines to transport pure hydrogen or blends with natural gas increases the risk of hydrogen embrittlement and poses potential integrity issues such as cracking to the pipelines. The use of inhibitors such as oxygen, carbon monoxide, and others can inhibit a material's absorption of atomic hydrogen and have been proposed to reduce the risk of hydrogen embrittlement. However, there may be unintended consequences if the impact of these inhibitors on internal corrosion is not carefully evaluated²³⁾.

Studies

Methodology

Scenario definition

A time-dependent accidental release of gas from its transport conditions is considered from a DN200 steel transmission gas pipeline of length $L_{\rm p}$ 500 m buried 1.5 m underground (typical cover for distribution pipelines). Transport conditions at the moment of failure are specified by pressure P, gas temperature $T_{\rm g}$, internal roughness ε , and nominal mass flow m (here: P 5 bar (g), T 15°C, m 2000 kg/h). A release was specified at $L_{\rm b}$ 100 m for top of the pipeline, with 3 circular orifice diameters (breaches with diameter $d_{\rm b1}$ 10 mm, $d_{\rm b2}$ 20 mm and $d_{\rm b3}$ 10 mm). The breach is considered to divide the pipeline into two independent sections: an upstream section A, and a downstream section B. The schematic diagram of the considered pipeline was presented on Fig. 1. The model performed discharge calculations for each section separately and

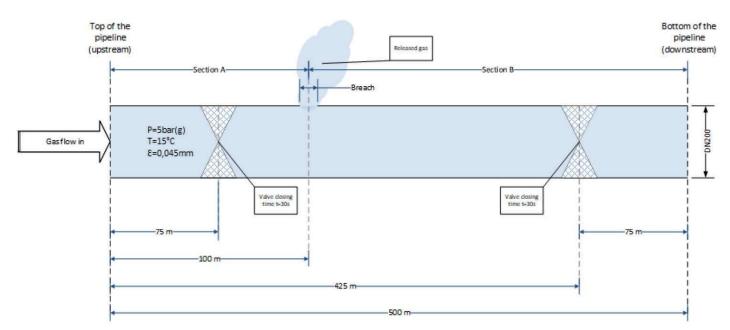


Fig. 1. Schematic diagram of the considered pipeline

Rys. 1. Uproszczony schemat rozpatrywanego gazociągu

o długości L_p 500 m, zakopanego 1,5 m pod ziemią (typowa warstwa pokrycia dla rurociągów dystrybucyjnych). Warunki transportu w momencie awarii są określone przez ciśnienie P, temperaturę gazu T_g , chropowatość wewnętrzną ε oraz nominalny przepływ masowy \dot{m} (tutaj: P 5 bar (g), T 15°C, \dot{m} 2000 kg/h). Wyłom (uwolnienie gazu) został zdefiniowany w odległości L_b 100 m na górze rurociągu, przy użyciu 3 okrągłych otworów o średnicach d_{b1} 10 mm, d_{b2} 20 mm i d_{b3} 10 mm. Wyłom dzieli rurociąg na dwie niezależne sekcje: sekcję górną A i sekcję dolną B. Schemat analizowanego rurociągu przedstawiono na rys. 1. Model posłużył do przeprowadzenia obliczeń dotyczących wypływu dla każdej sekcji osobno, a następnie do połączenia wyników, tak by oznaczyć całkowitą masę uwolnioną w funkcji czasu.

Automatyczna izolacja gazociągu obejmowała jeden zawór w odległości 75 m od wlotu i drugi w odległości 75 m od wylotu strumienia gazu; oba osiągnęły pozycję zamkniętą w ciągu t 30 s od rozpoczęcia uwalniania gazu. Pod uwagę wzięto następujące składy gazu: 100% CH $_4$ (wartość bazowa), CH $_4$ + 10% obj. H $_2$ (7–8% mas.) oraz 100% H $_2$. Meteorologia dla rozproszenia jest stała we wszystkich przypadkach: neutralna stabilność (klasa D wg Pasquilla i Gifforda), wiatr stały o prędkości 1,5 m/s w odniesieniu do wysokości H 2 m, temperatura otoczenia T_a 15°C, płaski teren i średnia wilgotność. Badanie dotyczyło oznaczenia stref zasięgu zagrożenia, dla dolnej granicy wybuchowości (DGW) i 50% DGW, dla ustalonych warunków.

Modelowanie

Symulacje uwalniania i rozprzestrzeniania się gazu zostały wykonane za pomocą programu DNV Phast²⁴⁾. Rurociąg został podzielony na 2 objętości kontrolne utworzone przez wyłom (część upstream i downstream) z zależnymi od czasu warunkami brzegowymi dotyczącymi zaworu w celu symulacji jego zamknięcia. Równania niestabilnego wypływu pozwoliły na obliczenie spadku ciśnienia w rurociągu, stanu termodynamicznego układu i prędkości opróżniania dla każdej objętości kontrolnej, a sumaryczny wypływ przedstawił całkowitą uwolnioną masę gazu. Model uwzględniał początkowy zdławiony strumień gazu (gdy spełnione są warunki krytyczne), przechodzący w przepływ poddźwiękowy wraz ze spadkiem ciśnienia, przy czym właściwości termodynamiczne zależne od składu aktualizowały gęstość, prędkość dźwięku i pęd strumienia. Transport gazu do warunków atmosferycznych odbywał się przy użyciu modelu dyspersji Gaussa z odbiciem od powierzchni ziemi i efektywną wysokością uwolnienia H.

Dla stałego wydatku wycieku gazu Q, kg/s, stałego wiatru U, płaskiego terenu, odbicia od podłoża z=0 i efektywnej wysokości uwalniania H, wykorzystano model dyspersji Gaussa do przewidywania stężenia gazów palnych po stronie nawietrznej w funkcji czasu, zgodnie z równaniem (1):

$$C(x,y,z) = \frac{Q}{2\pi U \sigma_{V}(x)\sigma_{Z}(x)} exp\left(-\frac{y^{2}}{2\sigma_{V}^{2}(x)}\right) \left[exp\left(-\frac{(z-H)^{2}}{2\sigma_{Z}^{2}(x)}\right) + exp\left(-\frac{(z+H)^{2}}{2\sigma_{Z}^{2}(x)}\right)\right] \left(1\right)$$

combined the results to give the total mass released as a function of time.

Automatic isolation enclosed one valve 75 m from the inlet and another 75 m from the outlet; both reached the closed position within t 30 s of release initiation. Gas compositions considered were: 100% methane (baseline), methane with 10% hydrogen by volume (7–8% by mass), and 100% hydrogen. Meteorology for dispersion is fixed across all cases: neutral stability (Pasquill-Gifford class D), steady wind U 1.5 m/s referenced at H 2 m height, ambient T_a 15° C, flat terrain, and average humidity. The study targeted intrinsic hazard distances, downwind ranges to the lower explosive limit (LEL) and to 50% LEL, under a single consistent operating and environmental setup.

Modelling

Transient gas release and dispersion were simulated with DNV Phast²⁴. The pipeline was represented as 2 control volumes created by the breach (upstream and downstream), with time-dependent valve boundary conditions to simulate isolation. Unsteady outflow equations computed internal pressure decay, thermodynamic state, and leak rate for each control volume; the combined outflow yields the total mass-release history. The formulation accommodated an initial choked jet (when critical conditions are met) transitioning to subsonic flow as pressure depletes, with composition-dependent thermodynamical properties updating density, speed of sound, and jet momentum. Atmospheric transport is modelled using a steady Gaussian plume with ground reflection and an effective release height H.

For steady release rate Q, kg/s, constant wind U, flat terrain, reflection at the ground z=0 and an effective release height H, the classic Gaussian plume was used to predict downwind concentration of flammable gas over time according to equation (1):

$$C(x,y,z) = \frac{Q}{2\pi U \sigma_{Y}(x)\sigma_{z}(x)} exp\left(-\frac{y^{2}}{2\sigma_{z}^{2}(x)}\right) \left[exp\left(-\frac{(z-H)^{2}}{2\sigma_{z}^{2}(x)}\right) + exp\left(-\frac{(z+H)^{2}}{2\sigma_{z}^{2}(x)}\right)\right] (1)$$

with lateral and vertical dispersion parameters and taken from the Pasquill-Gifford stability class D curves (neutral conditions). Ground-level concentrations along the plume centerline follow equation (2):

$$C(x,0,0) = \frac{Q}{\pi U \sigma_y(x) \sigma_z(x)} exp\left(-\frac{H^2}{2\sigma_z^2(x)}\right)$$
 (2)

Study focused on the gas concentration footprint at ground level, specifically the distance at which the gas concentration falls to the lower explosive limit (LEL) and to 50% of LEL (a common safety margin threshold). The distances indicated the hazard zone: anywhere the gas exceeded 100% LEL was flammable and at risk of ignition, and even 50% of LEL was often used as a precautionary evacuation or monitoring boundary in safety practice.

The pipeline and environmental parameters were kept the same across the studied samples: (i) methane, (ii) 90% methane + 10% hydrogen, and (iii) 100% hydrogen, so that Uwzględniono parametry rozproszenia bocznego i pionowego, które zaczerpnięto z krzywych klasy stabilności D Pasquilla i Gifforda (warunki neutralne). Stężenia na poziomie gruntu wzdłuż linii środkowej smugi były określone równaniem (2):

$$C(x,0,0) = \frac{Q}{\pi U \sigma_{\gamma}(x) \sigma_{z}(x)} exp\left(-\frac{H^{2}}{2\sigma_{z}^{2}(x)}\right)$$
(2)

Badanie skupiało się na śladzie stężenia gazu na poziomie gruntu, a konkretnie na odległości, w której stężenie gazu spadało do DGW i do 50% DGW (powszechnie stosowany próg bezpieczeństwa). Odległości wskazywały strefę zagrożenia: wszędzie tam, gdzie stężenie gazu przekraczało 100% DGW, istniało ryzyko zapłonu, a 50% DGW jest często stosowana jako poziom graniczny, przy którym podejmuje się decyzję o ew. ewakuacji lub dalszy monitoring w celu zapewnienia bezpieczeństwa.

Parametry rurociągu i parametry środowiskowe były takie same dla wszystkich badanych próbek: (*i*) CH₄, (*ii*) 90% CH₄ + 10% H₂, i (*iii*) 100% H₂, tak aby różnice w wynikach można było przypisać wpływowi wodoru. Każda symulacja była przeprowadzana do momentu całkowitego rozproszenia uwolnionego gazu (mieszaniny) lub spadku jej stężenia poniżej granicy palności i wybuchowości.

Wyniki badań

Modelowanie wycieku gazu

Wyciek gazu z każdego segmentu gazociągu przebiegał w kilku etapach. Na początku czoło zaburzenia propagowało od miejsca rozszczelnienia w kierunku końca odcinka rurociągu. W segmencie B przepływ zaczął się odwracać, a pik ciśnienia rozprzestrzeniał się od miejsca rozszczelnienia w kierunku końca tego segmentu. Na koniec nastąpiło dalsze obniżenie ciśnienia w każdym segmencie, aż do całkowitego opróżnienia rurociągu.

W miejscu wyłomu początkowo wystąpiło dławienie przepływu, a bezpośrednio poza otworem (wyłom) nastąpiło rozprężenie do ciśnienia atmosferycznego. Dane dotyczące wypływu po rozszczelnieniu (wyłom) dla sekcji A i B zostały połączone celem przedstawienia sumarycznego wypływu gazu z rurociągu. Wyniki symulacji dla opracowanych scenariuszy wycieku (uwolnienia gazu) wykazały szybki wypływ gazu bezpośrednio za wyłomem na rurociągu, po czym zawory zamknęły się w czasie 30 s od wykrycia wycieku (rys. 2).

Krzywe na rys. 2 ilustrują spadek ciśnienia w segmencie górnym (sekcja A) i dolnym (sekcja B) w funkcji czasu. Podano wartości dla sekcji górnej A i sekcji dolnej B. We wszystkich scenariuszach (a, b i c) odnotowano gwałtowny spadek ciśnienia po odcięciu rurociągu po 30 s. Największy spadek ciśnienia odnotowano w przypadku czystego wodoru. Krzywa ciśnienia gwałtownie spadała, podczas gdy metan utrzymywał wyższe ciśnienie przez dłuższy czas. Zawartość 10% H₂ miała nieznaczny wpływ na profil spadku ciśnienia w porównaniu z czystym CH₄.

differences in outcomes could be attributed to hydrogen's influence. Each simulation was run until the release was fully dispersed or concentrations dropped below flammable levels.

Results

Modelling of gas discharge

There were several stages in the release from each section. At the beginning, a disturbance front propagated from the breach towards the end of the pipe section. In the downstream section, the flow then started to reverse, and the flow reversal zone (or pressure peak) spreaded from the breach towards the downstream end of the pipe. Finally, there was further depressurization in each section, until the pipe is fully depressurized.

At the breach initially choked flow occurred and expansion to atmospheric pressure took place immediately outside the orifice (breach). The post-expansion discharge data for section A and B were combined into single equivalent pipe discharge data, which were then analyzed to obtain one or more representative average release segments. The simulated leak (release) scenarios showed a rapid, transient outflow of gas immediately after a pipeline breach, followed by the valves close in 30 s from leak detection (Fig. 2).

The curves illustrated pressure decay in the upstream segment (Section A) and downstream segment (Section B) over time. The values were given for the upstream section A and the downstream section B. All scenarios a), b) and c) showed a sharp pressure drop once the pipeline was isolated at 30 s. The pure hydrogen case depressurized the fastest. Its pressure curve falls steeply, whereas methane maintained higher pressure for longer. Adding $10\% H_2$ had an insignificant effect on the pressure decay profile compared to pure CH_4 . By the time of automatic valve closure (30 s), the H_2 pipeline pressure was already near atmospheric, while the CH_4 case still retained a substantial portion of its pressure that dissipated more slowly.

The presence of hydrogen (10% admixture) had an inconsiderable effect on the discharge rate and duration. Owing to hydrogen's lower molecular mass, the speed of sound in the gas mixture is higher, which leads to a higher initial outflow velocity through a choked breach. However, hydrogen's low density means the mass flow rate (kg/s) could be lower for hydrogen-rich gas at the same pressure, even if volumetric flow was higher. The 100% H, case showed the fastest depressurization comparing to other discussed scenarios. Overall, the duration of significant release was shorter for hydrogen-containing scenarios. This aligns with the expectation that hydrogen's high diffusivity and flow velocity tended to empty a breached pipeline faster. Adding hydrogen could reduce the total mass released in some failure modes because of the altered thermodynamic and flow characteristics¹¹).

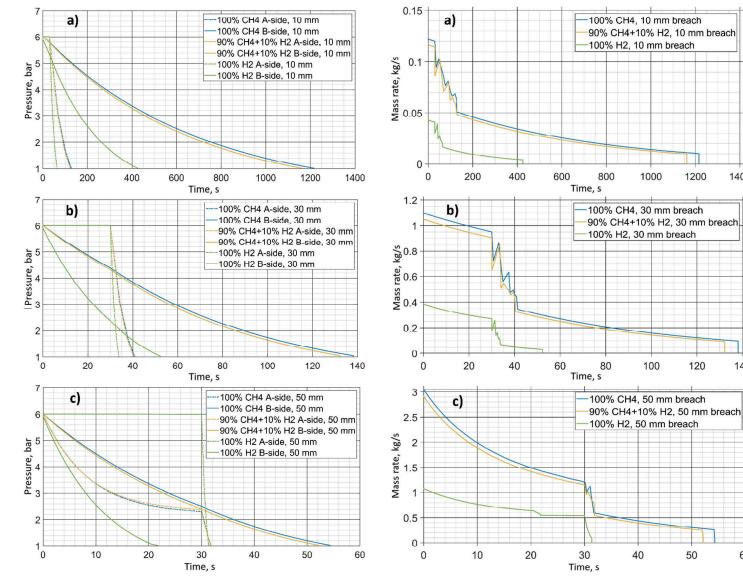


Fig. 2. Modeled pipeline pressure vs. time for (a) 10 mm; (b) 30 mm and (c) 50 mm breach, comparing methane (CH_d), methane with 10% hydrogen admixture, and hydrogen (H_)

Rys. 2. Przebieg zmian ciśnienia w rurociągu w funkcji czasu dla wyłomu (a) 10 mm, (b) 30 mm i (c) 50 mm, dla CH_4 , mieszaniny 90% $CH_4 + 10\% H_2$ oraz H_a

W chwili automatycznego zamknięcia zaworu (30 s) ciśnienie w rurociągu zawierającym czysty H, było już zbliżone do atmosferycznego, podczas gdy w przypadku CH₄ nadal utrzymywała się znaczna część ciśnienia początkowego.

Obecność wodoru (10% zawartości w mieszaninie) miała nieznaczny wpływ na prędkość i czas trwania wypływu gazu przez wyłom. Ze względu na mniejszą masę cząsteczkową wodoru prędkość dźwięku w mieszaninie gazowej była większa, co prowadziło do większej początkowej prędkości wypływu przez wyłom. Jednak mała gęstość wodoru oznacza, że natężenie przepływu masowego (kg/s) było mniejsze dla gazu "bogatego" w wodór przy tym samym ciśnieniu, nawet jeśli przepływ objętościowy byłby wyższy. W przypadku scenariusza dla 100% H, odnotowano największy spadek ciśnienia. Ogólnie, czas trwania wypływu gazu był krótszy w scenariuszach, w których stosowano wodór.

Fig. 3. Leak mass flow rate vs. time for (a) 10 mm, (b) 30 mm, and (c) 50 mm breaches of the pipeline, for gas compositions of 100% CH_a, 90% CH₄ + 10% H., and 100% H.

1000

100

40

1200

120

50

1400

140

Rys. 3. Zależność wydatku masowego wycieku od czasu dla wyłomów o średnicy (a) 10 mm, (b) 30 mm i (c) 50 mm na rurociągu, dla gazu: 100% CH_4 , mieszaniny 90% $CH_4 + 10\% H_2$ oraz 100% H_3

Mass flow rate

The mass flow rate in the orifice (breach) as a function of time was shown on Fig. 3. The values were given jointly for the upstream section A and the downstream section B of the pipeline. The initial release mass flow rates were also compared for a 10-, 30- and 50-mm breach. The methane (solid line) had the highest mass flow initially and maintained a higher flow for longer. The 10% H, blend (dashed line) is only slightly lower. Hydrogen (dotted line) had a much lower mass flow rate and dropped off rapidly as the pipe empties. For 10 mm breach, the H, mass flow essentially ceased by 30 s, whereas CH_4 flowed until ~55 s.

For considered initial parameters and 50 mm breach on pipeline, the pure methane leak started at about 3 kg/s and then declined with pressure fall. The $10\% H_2$ blend started Było to zgodne z oczekiwaniami, gdyż duża dyfuzyjność i prędkość przepływu wodoru powodowały szybsze opróżnianie uszkodzonego rurociągu. Dodanie wodoru może zmniejszyć całkowitą masę uwolnionego gazu (mieszaniny) w niektórych przypadkach awarii ze względu na zmienione właściwości termodynamiczne i przepływu¹¹⁾.

Przepływ masowy

Wartość przepływu masowego przez wyłom w funkcji czasu przedstawiono na rys. 3. Wartości podano łącznie dla obu sekcji rurociągu (A i B). Porównano również początkowe wartości masowego natężenia przepływu dla wyłomu o średnicy 10, 30 i 50 mm. Metan (linia ciągła) miał początkowo najwyższy przepływ masowy i utrzymywał wyższy przepływ przez dłuższy czas. W przypadku mieszanki zawierającej 10% H₂ (linia przerywana) różnica była jedynie nieznaczna. Wodór (linia kropkowana) miał znacznie mniejszy przepływ masowy, który gwałtownie spadał wraz z opróżnianiem gazociągu. W przypadku wyłomu o średnicy 10 mm przepływ masowy wodoru zasadniczo ustał po 30 s, natomiast metan przepływał do ok. 55. s.

Dla rozważanych parametrów początkowych i wyłomu na rurociągu o średnicy 50 mm, wyciek czystego metanu rozpoczął się od natężenia przepływu ok. 3 kg/s, a następnie zmniejszał się wraz ze spadkiem ciśnienia. Wyciek mieszanki zawierającej 10% H, był nieco mniejszy (ze względu na mniejszą gęstość tego gazu) i wynosił 2,9 kg/s. Początkowy przepływ masowy czystego wodoru wynosił 1 kg/s, a czas trwania wypływu był znacznie krótszy. W przypadku mniejszych wyłomów tendencja ta utrzymała się: wyciek CH₄ z wyłomu o średnicy 10 mm mógł trwać ok. 20 min do całkowitego opróżnienia segmentu (ponieważ jego przepływ wynosił początkowo tylko ok. 0,12 kg/s), podczas gdy ten sam wyłom o średnicy 10 mm w rurociągu z wodorem spowodowałaby jego opróżnienie w czasie mniej niż 7 min ze względu na większą prędkość przepływu. Krótszy czas trwania wycieku oznacza krótszy czas zagrożenia, ale początkowe natężenie wycieku H, (pod względem objętości) było większe, a chmura gazu tworzyła się szybciej.

Dyspersja gazu

Wyniki dla dyspersji gazu wykazały, jak daleko od miejsca wycieku (wyłomu), mieszanina gazu pozostawała w zakresie wybuchowości (powyżej DGW) w danych warunkach atmosferycznych. Przy słabym wietrze (1,5 m/s) chmura z dużego wycieku może przemieszczać się z wiatrem na odległość kilkudziesięciu metrów, zanim rozrzedzi się poniżej granicy palności. Dla każdego scenariusza opracowano maksymalne odległości (zasięg) przemieszczania się chmury gazu zgodnie z wiatrem do 100% DGW, wg szacunków modelu (rys. 4). Odległości odpowiadały najdalej położonemu punktowi, w którym stężenie gazu było równe DGW (ok. 5% obj. dla CH₄, 4% dla H₂). Poza

slightly lower, 2.9 kg/s, owing to its lower gas density. Pure hydrogen's initial mass flow was 1 kg/s, and the duration of outflow was substantially shorter for hydrogen. For smaller leaks, this trend continued: a 10 mm breach leak of CH_4 might last around 20 min to fully vent the segment (since its flow was only ~ 0.12 kg/s initially), whereas the same 10 mm breach on a hydrogen pipeline would vent in under 7 min due to higher flow velocity. Shorter leak duration mean a shorter-lived hazard, but the initial H_2 leak rates (in volume terms) were more intense, and any immediate cloud formed faster.

Dispersion of the released gas

The dispersion results revealed how far from the leak the gas mixture remained flammable (i.e. above LEL) under the given atmospheric conditions. In a low wind (1.5 m/s), the cloud from a large leak could travel downwind tens of meters before diluting below the flammability limit. The maximum downwind distances to 100% LEL were compiled for each scenario, as estimated by the model (Fig. 4). The distances corresponded to the furthest point where the gas concentration equaled the LEL (\sim 5% vol. for CH $_{\varphi}$, 4% for H_{2}). Beyond that distance, the mixture with air was to lean to ignite.

Results showed that for the 50 mm breach of pure methane, the LEL concentration extended roughly 2 m downwind. For the 10% H, blend, the LEL distance was slightly longer (~2.2 m). In the pure hydrogen case, the 4% H, in air was reached at about 7 m from the leak. In open-air dispersion, buoyancy caused hydrogen to rise and mix vertically, so its ground-level footprint was in fact smaller. Methane, while lighter than air, was less buoyant than H, and tended to stay at lower elevations longer, drifting with the wind. The 10% H, admixture to methane behaved close to methane because the small buoyancy increase was not enough to completely lift the plume, but it enhanced dilution slightly. Additionally, the hydrogen-rich cloud losed flammability sooner because as it dilutes, the gas mixture concentration decreased below 4%, whereas the methane cloud remained flammable until 5%. For the smaller leak sizes, the flammable distances (above LEL) were much shorter, i.e. a 10 mm leak of CH₄ might only form a few meters of flammable mixture (largely confined near the leak), and for $H_1 \sim 2$ m. The model indicated that for small breaches, buoyant gases like H, quickly dissipated upward, posing minimal horizontal hazard.

The analysis was also performed for 50% of the LEL concentration as a secondary metric. Half of LEL was sometimes used as an ERPG-2 level proxy for flammable gases, it was a concentration at which one might start to take protective actions even though it's too lean to burn, because any fluctuation or partial confinement could locally increase concentration. As expected, those distances were roughly double the LEL distances in

tym zasięgiem mieszanka z powietrzem była zbyt uboga, aby się zapalić.

Wyniki pokazały, że w przypadku wycieku czystego metanu z włomu o średnicy 50 mm, rozprzestrzeniał się on z wiatrem do stężenia DGW na ok. 2 m. W przypadku mieszanki zawierającej 10% H, odległość do osiągnięcia poziomu stężenia DGW była nieco większa (ok. 2,2 m). W przypadku czystego wodoru stężenie 4% H, w powietrzu osiągnięto w odległości ok. 7 m od miejsca wycieku. W przypadku rozproszenia na otwartej przestrzeni siła wyporu powodowała, że wodór unosił się i mieszał w pionie, więc jego ślad na poziomie gruntu był w rzeczywistości mniejszy. Metan, choć lżejszy odpowietrza, miał mniejszą wyporność niż H, i pozostawał dłużej na niższych wysokościach, unosząc się z wiatrem. Mieszanka CH₄ + 10% H, zachowywała się podobnie jak metan, ponieważ niewielki wzrost wyporności nie był wystarczający, aby całkowicie unieść smugę, ale nieznacznie zwiększył rozcieńczenie. Ponadto chmura bogata w wodór przestaje być łatwo palna wcześniej, ponieważ w miarę rozrzedzania stężenie mieszanki gazowej spadło poniżej 4%, podczas gdy chmura metanu pozostawała łatwo palna do stężenia 5%. W przypadku mniejszych wycieków odległości palności (powyżej DGW) były znacznie krótsze, tj. wyciek CH₄ z wyrwy o wielkości 10 mm mógł tworzyć mieszaninę palną tylko na odległości kilku metrów (głównie w pobliżu wycieku), a w przypadku H₂ było to ok. 2 m. Model wykazał, że w przypadku niewielkich wyłomów gazy wyporowe, takie jak H,, szybko rozpraszały się w górę, stwarzając minimalne zagrożenie w poziomie.

Analizę przeprowadzono również dla stężenia 50% DGW jako drugiego wskaźnika. Połowa wartości DGW była czasami stosowana jako wskaźnik zastępczy poziomu ERPG-2 dla gazów łatwo palnych. Było to stężenie, przy którym można było podjąć działania ochronne, mimo że było ono zbyt niskie, aby spowodować zapłon. Jednak wszelkie fluktuacje lub częściowe zamknięcie mogły lokalnie zwiększyć stężenie. Zgodnie z oczekiwaniami, odległości te były w wielu przypadkach ok. 2-krotnie większe od odległości DGW. Na przykład chmura metanu przy 50% DGW rozciągała się na ok. 5 m z wiatrem w przypadku wycieku o wielkości 50 mm. W przypadku wycieku H, z wyłomu o średnicy 50 mm wartość 0,5 DGW wynosiła ok. 13 m. Mieszanka gazu zawierająca 10% H₂ ponownie znalazła się w środku zakresu – nieco ponad 5 m odległości 50% DGW dla miejsca wyłomu. Chociaż strefa palności wodoru była zazwyczaj wąska w kierunku poziomym, niewielkie wycieki wodoru w środowisku burzliwym lub z przeszkodami nadal można było wykryć w niskich stężeniach zaskakująco daleko z wiatrem. Na spokojnym otwartym powietrzu niewielki wyciek mógłby szybko unosić się i rozpraszać, ale przeszkody lub słaba wentylacja mogłyby zatrzymać wodór i umożliwić jego boczne przemieszczanie się, rozprzestrzeniając bardzo rozcieńczony gaz na dużym obszarze.

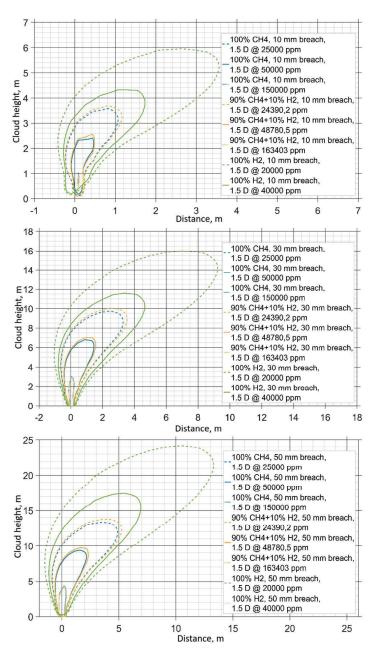


Fig. 4. Dispersion contours (cloud height vs. downwind distance) for 10-, 30-, and 50-mm pipeline breaches releasing CH_a , a 90% CH_4 + 10% H_2 blend, and H_3 , under 1.5 m/s wind, neutral stability.

Rys. 4. Kontury dyspersji (wysokość chmury palnego gazu względem odległości od wycieku) dla wyłomów o średnicy 10, 30 i 50 mm, dla CH_4 , mieszaniny 90% CH_4 + 10% H_2 oraz H_3

many cases. For instance, the methane cloud at 50% LEL extended to about 5 m downwind for the 50 mm leak. For the H_2 50 mm leak, 0.5LEL was around 13 m. The 10% H_2 blend again was intermediate – slightly more than 5 m 50% LEL distance for the leak breach. Although hydrogen's flammable zone tended to be narrow in the horizontal direction, a small hydrogen release in a turbulent or obstructed environment could still be detected at low concentrations surprisingly far downwind. In calm open air, a tiny leak could buoyantly rise and dissipate quickly, but obstacles or poor ventilation could trap hydrogen and allowed it to drift laterally, spreading very dilute gas over a wide area.

Modelowanie rozprzestrzeniania się chmury uwolnionego gazu wykazało, że dodanie 10% wodoru do metanu nie spowodowało znacznego zwiększenia zasięgu rozprzestrzeniania się wycieku substancji łatwo palnej. W rzeczywistości zasięg granicy palności może się nieznacznie zmniejszyć. Głównym zagrożeniem związanym z wyciekiem wodoru nie była chmura gazu o większym zasięgu, ale raczej większe prawdopodobieństwo zapłonu i możliwość bardziej gwałtownego spalania w przypadku zapłonu. Niewidzialny płomień wodoru i niska energia zapłonu oznaczają, że każde źródło zapłonu (np. iskra statyczna, gorąca powierzchnia) może łatwiej spowodować zapłon chmury, jeśli znajdowałaby się ona w pobliżu wycieku. W przypadku czystego metanu pewna część gazu mogłaby się rozproszyć bez zapłonu, gdyby nie było zapalnika, podczas gdy wodór mógłby się zapalić nawet przy minimalnym bodźcu.

Wnioski

Wprowadzanie wodoru do rurociągów gazu ziemnego stanowi obiecującą metodę wykorzystania istniejącej infrastruktury gazowej do transportu czystej energii. Wykonane studium przypadku niekontrolowanego uwolnienia z gazociągu transportującego mieszaninę 10% wodoru w gazie ziemnym wskazuje, że taki sposób domieszkowania może być realizowany bez istotnego wzrostu ryzyka, pod warunkiem właściwego zastosowania zabezpieczeń inżynieryjnych i procedur bezpieczeństwa. Wyniki modelowania dyspersji wykazały, że właściwości wodoru (masa, dyfuzyjność, duża prędkość płomienia) mają mieszany wpływ na skutki wypadków: wodór ma tendencję do szybszego rozpraszania się i rozcieńczania niż metan, co powoduje mniejszy zasięg chmury palnej i mniejszy wpływ promieniowania cieplnego w pożarach strumieniowych, ale może nieznacznie podwyższyć szczytowe ciśnienie wybuchów w scenariuszach o dużym zagęszczeniu. Jest to zgodne z wynikami innych prac naukowych, które wskazują, że mieszanki zawierające do ok. 20% H, nie powodują znacznego pogorszenia bezpieczeństwa^{25–34)}.

Z punktu widzenia projektowania i eksploatacji rurociągów wprowadzenie 10% wodoru jest wykonalne. Może wystąpić niewielki spadek ilości transportowanej energii na jednostkę objętości (ze względu na mniejszą gęstość energii wodoru), ale z drugiej strony nastąpi niewielki spadek ciśnienia w funkcji długości³⁾. Należy sprawdzić dopasowanie materiałów. Standardowa stal do budowy gazociągów jest ogólnie akceptowalna przy rozważanych poziomach zawartości wodoru w gazie ziemnym, ale zaleca się ich ciągłe monitorowanie pod kątem kruchości lub wycieków. W tej analizie zakładany rurociąg z automatycznymi zaworami (zamknięcie zaworu w ciągu 30 s) miał kluczowe znaczenie dla ograniczenia ilości uwolnionego gazu. Szybkie, automatyczne zawory odcinające i niezawodne systemy wykrywania wycieków (potencjalnie obejmujące czujniki

Overall, the dispersion modeling suggested that adding 10% hydrogen did not drastically increase the geographical spread of a flammable leak. In fact, the flammable footprint might slightly shrink. The main hazard of hydrogen in a leak was not a farther-reaching gas cloud, but rather the higher likelihood of ignition and the potential for more violent combustion if ignited. Hydrogen's invisible flame and low ignition energy mean that any source of ignition (a static spark, hot surface, etc.) was more likely to set off the cloud while it's still near the leak. With pure methane, a certain fraction of gas could disperse without ignition if no igniter was present, whereas hydrogen might ignite from minimal triggers.

Conclusions

Hydrogen blending into natural gas pipelines offers a promising pathway to leverage existing natural gas infrastructure for clean energy transport. This case study of an accidental release from a pipeline carrying 10% hydrogen in natural gas indicates that such blending can be accomplished without substantial increase in risk, if engineering controls and safety procedures were implemented properly. The dispersion modeling results showed that hydrogen's properties (lightweight, diffusive, high flame speed) have a mixed influence on accident consequences: hydrogen tends to disperse and dilute faster than methane, resulting in smaller flammable cloud extents and lower thermal radiation impact in jet fires, but it can slightly elevate the peak pressures of explosions in highly congested scenarios. This aligns with literature findings that blends up to about 20% H, present no drastic deterioration in safety $^{25-34}$.

From a pipeline design and operation perspective, the introduction of 10% hydrogen appears manageable. There may be a slight reduction in transported energy per volume (due to hydrogen's lower energy density), but conversely a slight reduction in pressure drops per distance³⁾. Material compatibility must be verified – standard pipeline steels have been found generally acceptable at these hydrogen levels, though ongoing monitoring for embrittlement or leaks is recommended. In this analysis, the assumed pipeline with automated valves (valve closure in 30 s) was critical in limiting the release amount. Fast automatic shut-off valves and reliable leak detection systems (potentially including hydrogen sensors) are therefore important risk mitigation measures when introducing hydrogen. Additionally, ventilation and dispersion are key allies in safety: since hydrogen will rise, ensuring that enclosed spaces like compressor stations or valve pits are adequately ventilated will greatly reduce explosion risk. It is important to emphasize the need for clear regulatory guidelines as countries move toward hydrogen blending.

In conclusion, the performed case study supports the viability of methane with hydrogen admixture pipeline

wodoru) są zatem ważnymi środkami ograniczającymi ryzyko podczas wprowadzania wodoru. Ponadto wentylacja i rozpraszanie są kluczowymi czynnikami wpływającymi na bezpieczeństwo. Ponieważ wodór jest lżejszy od powietrza i unosi się do góry, zapewnienie odpowiedniej wentylacji zamkniętych przestrzeni, takich jak stacje sprężarek lub studzienki zaworowe, znacznie zmniejsza ryzyko wybuchu. Ważne jest, aby podkreślić potrzebę jasnych wytycznych regulacyjnych w miarę jak kraje przechodzą na stosowanie mieszanek wodoru z gazem ziemnym.

Przeprowadzone studium przypadku potwierdza możliwość transportu rurociągowego metanu z domieszką wodoru z punktu widzenia bezpieczeństwa. Dodanie wodoru nie zmieniło zasadniczo wyników – raczej nieznacznie zmieniło ich charakterystykę (mniejsze strefy oddziaływania dla badanej mieszanki). Przestrzegając nowych norm i wdrażając odpowiednie środki ograniczające ryzyko (szybkie odcięcie dopływu gazu, monitorowanie, wentylacja), operatorzy mogą utrzymać ryzyko związane z rurociągami gazu ziemnego/wodoru na akceptowalnym poziomie, porównywalnym z tradycyjnymi rurociągami gazu ziemnego. Dzięki starannemu zarządzaniu dodawanie wodoru do systemów rurociągów gazu ziemnego (przesyłowych i dystrybucyjnych) może stanowić bezpieczny i skuteczny element transformacji energetycznej, umożliwiający znaczne ograniczenie emisji gazów cieplarnianych przy jednoczesnej ochronie ludzi i infrastruktury.

Praca wykonana w ramach projektu IDUB D2 9649 (2024–2025).

transport from a safety standpoint. Hydrogen blending did not fundamentally change the outcomes – rather, it slightly altered their characteristics, often in a conservative direction (smaller impact zones for the studied mixture). By adhering to emerging standards and implementing targeted risk mitigation (rapid isolation, monitoring, ventilation), operators can keep the risks of natural gas/hydrogen pipelines at an acceptable level, comparable to traditional natural gas pipelines. With careful management, the blending of hydrogen into natural gas pipeline systems (transmission and distribution) can be a safe and effective component of the energy transition, enabling significant reductions in greenhouse gas emissions while protecting people and infrastructure.

This work was done as part of a project IDUB D2 9649 (2024–2025).

Received/Otrzymano: 12-08-2025 Reviewed/Zrecenzowano: 23-08-2025 Accepted/Zaakceptowano: 03-09-2025 Published/Opublikowano: 18-09-2025

REFERENCES/LITERATURA

- [1] J. Jaworski, P. Kułaga, T. Blacharski, *Energies* 2020, **13**, nr 11, 3006.
- [2] J. Jaworski, E. Kukulska-Zając, P. Kułaga, *Nafta-Gaz* 2019, **10**, 625.
- [3] S. Kuczyński, M. Łaciak, A. Olijnyk, A. Szurlej, T. Włodek, *Energies* 2019, **12**, nr 3, 569.
- [4] https://inig.pl, dostęp 7 lipca 2025 r.
- [5] Ustawa Prawo ochrony środowiska z dnia 27 kwietnia 2001 r., *Dz.U.* 2025, poz. 647.
- [6] Directive 2012/18/EU of the European Parliament and of the Council, Jul 4, 2012.
- [7] ISO/TR 15916:2015, Basic considerations for the safety of hydrogen systems.
- [8] NFPA 2, Hydrogen Technologies Code, 2023.
- [9] IGEM/SR/25: Ed.2 (2010), Hazardous area classification of natural gas installations, + Suppl. 1 (2013): Application to hydrogen.
- [10] Energy Institute, Model Code of Safe Practice Part 15: Area classification for installations handling flammable fluids, 2024.
- [11] C. Guo, J. Jiang, B. Zhang, F. Lou, *J. Hydrogen Energy* 2025, **134**, 100.
- [12] W.J. Kim, Y. Park, D.J. Park, J. Loss Prev. Process Ind. 2024, **91**, 105412.
- [13] Y. Sun, Z. Li, X. Wu, 4th Int. Conf. on Energy Engineering and Power Systems (EEPS), Hangzhou, China, 9–11 August 2024, 216.
- [14] J.B. Cristello, J.M. Yang, R. Hugo, Y. Lee, S.S. Park, *Int. J. Hydrogen Energy* 2023, **48**, nr 46, 17605.
- [15] Y.D. Jo, K. Park, D.A. Crowl, American Institute of Chemical Engineers, USA, 2006.
- [16] L. Wang, J. Chen, T. Ma, R. Ma, Y Bao, Z. Fan, Int. J. Hydrogen Energy 2024, 49, 1166.
- [17] A. Ruiz-Tagle, K.M. Groth, Int. J. Hydrogen Energy 2024, 57, 107.
- [18] W. Hua, X. Yingying, X. Ling, M. Jie, L. Linfeng, T. Yongfan, W. Yexi, Mech. Eng. 2024, 46, nr 4, 722.

- [19] Z. Xia, Z.D. Xu, H. Lu, H. Peng, X. Zang, X. Liu, X. Wang, Int. J. Hydrogen Energy 2024, 90, 230.
- [20] A. Islam, T. Alam, N. Sheibley, K. Edmonson, D. Burns, M. Hernandez, Int. J. Hydrogen Energy 2024, **93**, 1429.
- [21] F. Jiajun, D. Lijin, M.A. Cheng, Z. Ziyu, M. Hongliang, W. Boxin, W. Qinying, J. Chin. Soc. Corr. Prot. 2024, 45, nr 2, 296.
- [22] J. Hoschke, M.F.W. Chowdhury, J. Venezuela, A. Atrens, *Corr. Rev.* 2023, 41, nr 3, 277.
- [23] S.P. Kotu, C. Kagarise, C.D. Taylor, S. Finneran, Int. Pipeline Conf., American Society of Mechanical Engineers, Calgary, Alberta, Canada, Sep. 26–30, 2022, 86564, V001T08A014.
- [24] Anonim, https://www.dnv.com/software/services/plant/consequence-analysis-phast/.
- [25] J. Li, F. Song, X. Zhang, Sci. Technol. Energy Transition (STET) 2024, 79, 9.
- [26] S. Kuczyński, S. Nagy, C. Spyra, A. Szurlej, P. Wnęk, *Przem. Chem.* 2019, 98, nr 12, 2000.
- [27] S. Kuczyński, M. Łaciak, C. Spyra, A. Szurlej, P. Wnęk, *Przem. Chem.* 2023, **102**, nr 6, 594.
- [28] S. Kuczyński, K. Kogut, Wiad. Naft. Gazown. 2023, 26, 14.
- [29] M. Dell'Isola, G. Ficco, L. Moretti, J. Jaworski, P. Kulaga, E. Kukulska-Zając, *Energies* 2021, **14**, nr 24, 8461.
- [30] X. Tian, J. Pei, *Heliyon* 2023, **9**, nr 11, e21454.
- [31] P. Remacha, E. Tizné, A. Pina, J. Barroso, A. Muelas, J. Ballester, Int. J. Hydrogen Energy 2025, 142, 685.
- [32] M. Łaciak, W. Panek, Przem. Chem. 2025, 104, nr 5, 560.
- [33] A. Korda-Burza, M. Kałdonek, D. Polak, *Przem. Chem.* 2021, **100**, nr 1, 84.
- [34] R. Biały, A. Żywczak, A. Szurlej, *Energies* 2024, **17**, nr 5, 1221.