AGH w Krakowie

Simulation of multi-stage membrane CH₄/CO₂ separation for upgrading biogas to grid injectable biomethane

Symulacja wielostopniowej separacji membranowej CH₄/CO₂ w uzdatnianiu biogazu do biometanu przeznaczonego do zatłaczania do sieci gazu ziemnego

DOI: 10.15199/62.2025.9.10

Przeprowadzono symulację procesu uzdatniania biogazu do biometanu, na potrzeby jego zatłoczenia do sieci gazu ziemnego, z wykorzystaniem membran poliimidowych. W szczególności uwzględniono wpływ zastosowania kaskad membranowych jedno-, dwu- i trójstopniowych na efektywność procesu (odzysk metanu, wartość opałowa i liczba Wobbego). Surowy biogaz (61,0% mol CH₄, 38,8% mol CO₂) został wstępnie oczyszczony i sprężony, a w przypadku układów wielostopniowych strumienie permeatu były ponownie sprężane i mieszane. Zastosowanie trójstopniowego systemu membranowego przy ciśnieniu 30 bar pozwoliło na osiągnięcie wysokiego odzysku metanu (ok. 99,57% mol), niskich strat CH₄ (ok. 8,9%) i osiągnięcie liczby Wobbego na poziomie 50,2 MJ/m³, ale wiązało się z wysokim zużyciem energii (ok. 78,8 kW lub 0,71 kWh_a/m³). Cienkowarstwowe membrany kompozytowe umożliwiły uzdatnienie wstępnie oczyszczonego biogazu do biometanu o parametrach pozwalających na jego zatłoczenie do sieci gazu ziemnego.

Słowa kluczowe: biogaz, biometan, separacja membranowa, uzdatnianie gazu, sieć gazu ziemnego, usuwanie CO₂, energia odnawialna, przepuszczalność, odnawialny gaz ziemny, *BRE Promax*

Upgrading biogas from anaerobic digestion to bio-MeH before its injection to gas grid by polyimide membrane sep. was simulated. In particular, the effect of single-, 2-, and 3-stage membrane cascades on the process efficiency (MeH recovery, heating value and Wobbe index) was taken into consideration. Feed biogas (61.0% mol MeH, 38.8% mol CO₂) was pretreated and compressed, then permeate streams were recompressed and remixed in multistage cases. Use of the 3-stage membrane system at 30 bar resulted in high MeH recovery (about 99.57% mol), low MeH losses (about 8.9%) and the Wobbe index 50.2 MJ/m³, but required high energy consumption (about 78.8 kW or 0.71 kWh_e/m³). Thin-film composite membranes allowed to upgrade raw biogas without additional pretreatment.

Keywords: biogas, biomethane, membrane separation, gas upgrading, natural gas grid, CO₂ removal, renewable energy, gas permeability, renewable natural gas (RNG), BRE Promax

Globalny rynek energetyczny przechodzi transformację, spowodowaną pilną potrzebą łagodzenia zmian klimatu, zwiększenia bezpieczeństwa energetycznego i przejścia na gospodarkę o obiegu zamkniętym. W tym kontekście gazy odnawialne mogą odegrać kluczową rolę w dekarbonizacji

Dr inż. Szymon KUCZYŃSKI (ORCID: 0000-0001-8261-4417) w roku 2007 ukończył studia na Wydziale Fizyki i Informatyki Stosowanej Akademii Górniczo-Hutniczej w Krakowie. Jest pracownikiem badawczo-dydaktycznym w Katedrze Inżynierii Gazowniczej Wydziału Wiertnictwa, Nafty i Gazu AGH w Krakowie. Specjalność p procesy technologiczne w gazowniczej w jakości płynów złożowych z wykorzystaniem spektroskopii Ramana.

Szymon KUCZYŃSKI, PhD (ORCID: 0000-0001-8261-4417), in 2007 he graduated from the Faculty of Physics and Applied Computer Science at the AGH University of Science and Technology in Krakow. He is a research and teaching employee at the

Department of Gas Engineering, Faculty of Drilling, Oil, and Gas, AGH in Krakow. Specialty – technological processes in natural gas, energy storage, CCS technology, and in-situ monitoring of reservoir fluid quality using Raman spectroscopy.

* Address for correspondence/Adres do korespondencji:

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, al. Adama Mickiewicza 30, 30-059 Kraków, tel.: (12) 617-22-20, e-mail: szymon.kuczynski@agh.edu.pl

The global energy market is undergoing a profound transformation, driven by the urgent need to mitigate climate change, enhance energy security, and transition to a circular economy. In this context, renewable gases can play a pivotal role in decarbonizing sectors that are difficult to electrify, such as the power sector, heavy industry, and transport. Biogas, produced through anaerobic digestion of organic matter, including agricultural waste, sewage sludge, and organic municipal solid waste, represents a versatile and sustainable energy carrier. It is a renewable fuel composed mainly of methane (CH_s, typically 50–75%) and carbon dioxide (CO₂, 25-50%), together with traces of impurities such as hydrogen sulfide (H,S), water vapour (H,O), nitrogen (N_2) , oxygen (O_2) , ammonia (NH_2) , carbon monoxide (CO), volatile organic compounds and siloxanes $^{l-4)}$.

Although raw biogas can be used for combined heat and power generation, its direct use is often limited to the vicinity of the production site because of its low energy density and corrosive impurities. To fully exploit its poten-

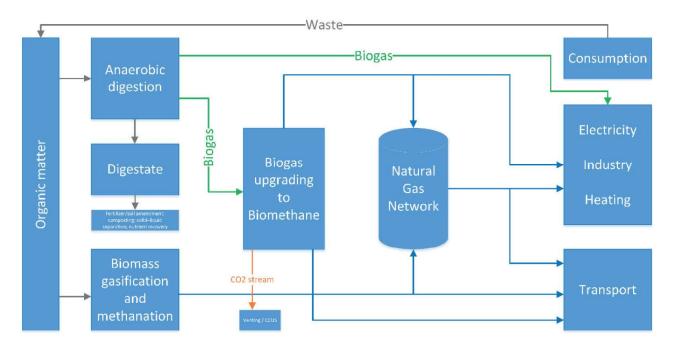


Fig. 1. Schematic diagram of biogas and biomethane production and utilization pathways²⁾

Rys. 1. Poglądowy schemat procesu produkcji i możliwości wykorzystania biogazu oraz biometanu²⁾

sektorów, takich jak sektor energetyczny, przemysł ciężki i transport. Biogaz, wytwarzany w procesie beztlenowej fermentacji materii organicznej, w tym odpadów rolniczych, osadów ściekowych i organicznych odpadów komunalnych, stanowi wszechstronny i zrównoważony nośnik energii. Jest to paliwo odnawialne składające się głównie z metanu (CH₄, zazwyczaj 50–75%) i ditlenku węgla (CO₂, 25–50%), wraz ze śladowymi ilościami zanieczyszczeń, takich jak siarkowodór (H₂S), para wodna (H₂O), azot (N₂), tlen (O₂), amoniak (NH₃), tlenek węgla (CO) oraz lotne związki organiczne i siloksany^{1–4}).

Chociaż surowy biogaz może być wykorzystywany do wytwarzania energii cieplnej i elektrycznej, to jego bezpośrednie zastosowanie jest często ograniczone do okolic miejsca produkcji ze względu na niską gęstość energetyczną i zawartość zanieczyszczeń korozyjnych. Aby w pełni wykorzystać jego potencjał i zintegrować go z szerszą infrastrukturą energetyczną, niezbędne jest jego oczyszczenie. Uzdatnienie biogazu to proces oczyszczania surowego biogazu poprzez usuwanie CO2, H2S i innych zanieczyszczeń w celu uzyskania biometanu, gazu o zawartości metanu przekraczającej 95%. Umożliwia to jego zatłaczanie do istniejących sieci gazu ziemnego lub wykorzystanie jako wysokiej jakości paliwo do pojazdów, co bezpośrednio zastępuje paliwa kopalne, poprawia bezpieczeństwo energetyczne i zmniejsza emisję gazów cieplarnianych^{5–10)}. Przykładowy schemat produkcji i wykorzystania biogazu i biometanu przedstawiono na rys. 1.

Wprowadzanie biometanu do sieci gazu ziemnego

Systemy dystrybucji i przesyłu gazu ziemnego mają szansę stać się jednym z najważniejszych elementów w osiągniętial and integrate it into the broader energy infrastructure, its upgrading is essential. Biogas upgrading is the process for purifying raw biogas by removing CO_2 , H_2S , and other contaminants to produce biomethane, a gas with a methane content exceeding 95%. This enables its injection into existing natural gas grids or its use as a high-quality vehicle fuel, thus directly displacing fossil fuels, improving energy security, and reducing greenhouse gas emissions ^{5–10)}. Schematic pathways for the production and utilization of biogas and biomethane are presented on Fig. 1.

Injection of biomethane into the natural gas network

Natural gas distribution and transmission systems are poised to become one of the most critical components in achieving climate neutrality in the context of the energy transition. The availability and functional versatility of natural gas networks guarantee a secure and gradual transformation of the energy sector in Poland. Furthermore, a key challenge for modern gas grids will be to accommodate the transport and distribution of hydrogen and biomethane, which requires at first proper regulation and numerous new connections between production facilities and the existing network. Such installations typically constitute small production plants, and expansion of the current infrastructure for transporting and distributing renewable gaseous fuels will be essential^{11–13}).

Biomethane can be injected into the natural gas network after being compressed to the required pressure via a compressor station located at the production site. In many countries of the European Union, access to the natural gas grid is guaranteed for all biogas suppliers. A significiu neutralności klimatycznej w kontekście transformacji energetycznej. Dostępność i funkcjonalna wszechstronność sieci gazu ziemnego gwarantują bezpieczną i stopniową transformację sektora energetycznego w Polsce. Ponadto kluczowym wyzwaniem dla nowoczesnych sieci gazowych będzie dostosowanie transportu i dystrybucji wodoru i biometanu, co wymaga przede wszystkim odpowiednich regulacji oraz licznych nowych połączeń między zakładami produkcyjnymi a istniejącą siecią. Instalacje tego typu to zazwyczaj niewielkie zakłady produkcyjne, dlatego niezbędna będzie rozbudowa obecnej infrastruktury służącej do transportu i dystrybucji odnawialnych paliw gazowych^{11–13)}.

Biometan może być zatłaczany do sieci gazu ziemnego po sprężeniu do wymaganego ciśnienia za pomocą sprężarek znajdujących się w miejscu jego produkcji. W wielu krajach Unii Europejskiej dostęp do sieci gazowej jest zagwarantowany dla wszystkich wytwórców biogazu. Istotną zaletą wykorzystania sieci dystrybucji gazu do transportu biometanu jest możliwość połączenia zakładów produkcyjnych, często zlokalizowanych na obszarach wiejskich, z regionami o większej gęstości zaludnienia, a co za tym idzie, większym zapotrzebowaniu na energię. Głównymi barierami dla wprowadzania biogazu są wysokie koszty modernizacji i podłączenia do sieci. Koncepcja zbiorowych punktów zatłaczania biometanu może być wdrażana w różnych konfiguracjach: zbiorowej opartej na sieci, indywidualnej opartej na sieci oraz poprzez transport drogowy (z wykorzystaniem bioCNG). W niektórych krajach, takich jak Niemcy, operator systemu dystrybucyjnego (OSD) pokrywa większość kosztów związanych z zatłaczaniem biometanu, w tym budowę infrastruktury przyłączeniowej i sprężanie gazu. W przypadku gdy zakład produkcji biometanu znajduje się w odległości kilku kilometrów od istniejącej sieci gazowej, budowa rurociągu może okazać się nieopłacalna z ekonomicznego punktu widzenia.

Kolejnym wyzwaniem i kluczowym czynnikiem infrastrukturalnym, który decyduje o możliwości wprowadzenia biometanu do systemu dystrybucyjnego, jest jego zdolność absorpcyjna (tzw. chłonność sieci)^{14–16)}. Kraje, które wprowadzają biometan do swoich sieci gazu ziemnego, stosują surowe wymogi prawne i techniczne dotyczące monitorowania jakościowego i ilościowego, które określają limity dla składników takich, jak siarka elementarna, H₂S, CO₂, O₂ i N₂, aby zapobiec zanieczyszczeniu sieci gazowej i pogorszeniu jakości gazu dostarczanego do odbiorców końcowych^{17–23)}.

Biometan może być również wykorzystywany w sektorze transportowym, co może znacząco przyczynić się do ograniczenia emisji gazów cieplarnianych. Biogaz, a w szczególności uzdatniony biometan, stanowi skuteczną strategię osiągnięcia celów określonych w dyrektywie w sprawie odnawialnych źródeł energii II (REDII)²⁴). Pojazdy napędzane gazem ziemnym, powszechnie nazywane pojazdami na gaz ziemny (NGV), a także infrastruktura do tankowania są kompatybilne z biometanem^{12, 13, 25}).

cant advantage of using the gas distribution network for biomethane transport is the ability to connect production sites, often located in rural areas, to regions with higher population density and, consequently, greater energy demand. The main barriers to injection include the high costs of modernisation and grid connection. The concept of a collective biomethane injection point, in principle, can be implemented in various configurations: grid-based collective, grid-based individual, and via road transport (using bioCNG). In some countries, such as Germany, DSO covers most costs associated with biomethane injection, including the construction of the connection infrastructure and gas compression. When a biomethane plant is located on several kilometres distance from an existing natural gas grid, pipeline construction may prove economically unviable.

Another challenge and crucial infrastructural factor that determines the feasibility of biomethane injection into the distribution system is its absorption capacity^{14–16)}. Countries that inject biomethane into their grids implement strict legal and technical requirements for qualitative and quantitative monitoring that specify limits for components such as elemental sulfur, H_2S , CO_2 , O_2 and N_2 to prevent contamination of the gas grid and prevent degradation in the quality of gas delivered to end consumers^{17–23)}.

Biomethane can also be utilized in the transport sector which can significantly contribute to the reduction of greenhouse gas emissions. Biogas, and particularly upgraded biomethane, represents an effective strategy to achieve the targets set forth in the Renewable Energy Directive II (REDII)²⁴). Vehicles powered by natural gas, commonly referred to as natural gas vehicles (NGV), as well as the refuelling infrastructure, are compatible with biomethane^{12, 13, 25}).

A multidimensional analysis of the EU biomethane strategy

Reconciling REPowerEU Deployment Targets with Fugitive Methane emissions and CCUS synergies was included in the European Union's REPowerEU plan, formulated in response to the energy market shock of 2022 following war in Ukraine, sets a target of 35 billion m³ annually of biomethane by 2030, up from approximately 3,5 billion m³ in 2021. This positions biomethane as a central pillar of the EU strategy for supply diversification and an accelerated energy transition²⁶.

This ambitious growth target forms the basis for investment planning and technology deployment in all member states. However, recent studies highlight methane emissions across the entire biogas and biomethane supply chain, adding a new dimension to technology selection. Methane is an atmospheric impurity and the minimizing its fugitive emissions from upgrading facilities, pipelines, and storage is now a critical performance indicator. Consequently,

Wielowymiarowa analiza strategii UE w zakresie biometanu

Pogodzenie celów wdrożenia REPowerEU z emisjami metanu i synergią CCUS zostało uwzględnione w planie REPowerEU Unii Europejskiej, sformułowanym w odpowiedzi na wstrząs na rynku energetycznym w 2022 r. po wybuchu wojny na Ukrainie. Plan ten wyznacza cel produkcji 35 mld m³ biometanu rocznie do 2030 r., w porównaniu z ok. 3,5 mld m³ w 2021 r. To sprawia, że biometan staje się głównym filarem strategii UE na rzecz dywersyfikacji dostaw i przyspieszenia transformacji energetycznej²6).

Ten ambitny cel wzrostu stanowi podstawę planowania inwestycji i wdrażania technologii we wszystkich państwach członkowskich. Jednak ostatnie badania zwracają uwagę na emisje metanu w całym łańcuchu dostaw biogazu i biometanu, dodając nowy wymiar do wyboru technologii. Metan jest gazem cieplarnianym, a minimalizacja jego emisji z kopalń, zakładów uzdatniających, rurociągów (infrastruktury przesyłowej i dystrybucyjnej) i magazynów jest obecnie kluczowym wskaźnikiem efektywności. W związku z tym technologie są oceniane nie tylko pod kątem zużycia energii i kosztów inwestycyjnych, ale także całkowitych strat metanu w systemie, co wymaga stosowania sprawdzonych metod wykrywania i usuwania wycieków (LDAR)^{27, 28)}.

Ponadto coraz większą popularność zyskuje integracja procesów uzdatniania biogazu ze strategiami zarządzania emisjami ditlenku węgla. Technologie takie jak separacja kriogeniczna i płukanie aminami mogą wytwarzać stosunkowo czysty strumień CO₂, który można wykorzystać lub magazynować (CCUS), redukując emisję ditlenku węgla w procesie²⁶).

Produkcja biometanu pozwala osiągnąć znaczne zmniejszenie emisji gazów cieplarnianych w porównaniu z paliwami kopalnymi. Badania pokazują, że łańcuchy dostaw biogazu i biometanu mogą zmniejszyć emisję gazów cieplarnianych o 51–70% w porównaniu z gazem ziemnym i o 42–65% w porównaniu z metodami produkcji wodoru²⁹). Ponadto biometan pochodzący z odpadów biologicznych może spowodować spadek emisji gazów cieplarnianych nawet o 79% w porównaniu z gazem ziemnym³⁰).

Pomimo swoich zalet, emisje metanu mogą nadal występować na różnych etapach łańcucha dostaw biometanu. Skuteczne strategie ograniczania emisji metanu są niezbędne, aby zapewnić korzyści klimatyczne wynikające z produkcji biometanu^{31, 32)}.

Biometan w Polsce. Stan obecny, potencjał i perspektywy rozwoju

Według danych Urzędu Regulacji Energetyki (URE) z marca 2025 r. w Polsce działa 416 instalacji: 415 biogazowni (179 biogazowni rolniczych) i tylko jedna biometanownia^{33,34}). Dane Agencji Rynku Energii (ARE) wskazują,

technologies are evaluated not only on their energy consumption and capital cost, but also on their total system methane losses, necessitating robust leak detection and repair (LDAR) practices^{27, 28)}.

Furthermore, the integration of biogas upgrading with carbon management strategies is gaining traction. Technologies such as cryogenic separation and amine scrubbing can produce a relatively pure CO_2 stream that can be utilised or stored (CCUS), enhancing the overall carbon negativity of the process²⁶.

Biomethane production can achieve substantial greenhouse gas savings compared to fossil fuels. Studies show that biogas and biomethane supply chains can reduce GHG emissions by 51–70% compared to natural gas and 42–65% compared to hydrogen production routes²⁹. Additionally, biomethane from biowaste can result in up to 79% lower GHG emissions compared to natural gas³⁰.

Despite its benefits, methane emissions can still occur at various stages of the biomethane supply chain. Effective methane mitigation strategies are essential to ensure the climate benefits of biomethane production^{31, 32)}.

Biomethane in Poland. Current status, potential and development perspective

According to data from the Energy Regulatory Office (URE) in March 2025, Poland hosts 416 operational installations: 415 biogas plants (179 agricultural biogas plants) and only one biomethane facility^{33, 34)}. Data from the Energy Market Agency (ARE) indicate that the combined installed capacity of these installations amounts to approximately 320 MW, with an annual electricity production of just under 1.6 TWh. This represents only 0.94% of the national electricity production in 2024. However, the potential for growth in this energy segment is considerably larger, a point that has been emphasized for years^{35–37)}. In February 2025, the first biomethane plant in Poland was commissioned in Brody (Lubusz Voivodeship), within an agricultural experimental holding. This installation is designed to produce 0.65 million m³ of biomethane annually. The gas will be compressed and sold as bioCNG for use in the transport sector.

By comparison, Europe is significantly more advanced in biomethane development, with over 20 000 biogas plants and approximately 1600 biomethane facilities already in operation. The technical production potential for biomethane in the EU had already exceeded 6.4 billion m^3 by the end of the first quarter of 2024^{37}). According to the National Energy and Climate Plan³⁸ (KPEiK), Poland's annual biomethane production potential is estimated to reach up to 8 billion m^3 . This volume would cover up to 46% of the national demand for natural gas (8 out of 17,4 billion m^3), thus reducing import dependency and accelerating the energy transition, particularly in the power and heating sectors³⁶. Poland's biomethane

że łączna moc zainstalowana tych instalacji wynosi ok. 320 MW, a roczna produkcja energii elektrycznej wynosi nieco poniżej 1,6 TWh. Stanowi to jedynie 0,94% krajowej produkcji energii elektrycznej w 2024 r. Jednak potencjał wzrostu w tym segmencie energetycznym jest znacznie większy, co podkreśla się od lat^{35–37)}. W lutym 2025 r. w Brodach (woj. lubuskie) uruchomiono pierwszą w Polsce biometanową instalację na terenie rolnego gospodarstwa doświadczalnego. Instalacja ta została zaprojektowana tak, aby wytwarzać 0,65 mln m³ biometanu rocznie. Gaz zostanie sprężony i sprzedany jako bioCNG do wykorzystania w sektorze transportowym.

Dla porównania, Europa zachodnia jest znacznie bardziej zaawansowana w rozwoju technologii wytwarzania biometanu, posiada ponad 20 000 biogazowni i ok. 1600 zakładów produkujących biometan. Potencjał techniczny produkcji biometanu w UE przekroczył 6,4 mld m³ pod koniec pierwszego kwartału 2024 r.³⁷⁾. Zgodnie z Krajowym Planem Energetycznym i Klimatycznym³⁸⁾ (KPEiK) szacuje się, że roczny potencjał produkcji biometanu w Polsce może osiągnąć nawet 8 mld m³. Ta ilość pokryłaby do 46% krajowego zapotrzebowania na gaz ziemny (8 z 17,4 mld m³), zmniejszając tym samym zależność od importu i przyspieszając transformację energetyczną, zwłaszcza w sektorach energetycznym i ciepłowniczym³⁶⁾. Potencjał Polski w zakresie biometanu jest znaczny, dzięki zasobom biomasy rolniczej i odpadów komunalnych. Pomimo wyzwań, takich jak wysokie koszty inwestycyjne i bariery prawne, korzyści środowiskowe i ekonomiczne sprawiają, że biometan jest obiecującym źródłem energii odnawialnej dla kraju. Dalsze inwestycje i wsparcie dla technologii biogazu będą miały kluczowe znaczenie dla realizacji tego potencjału oraz osiągnięcia celów w zakresie bezpieczeństwa energetycznego i zrównoważonego rozwoju^{39–43)}.

Przegląd technologii uzdatniania biogazu ze szczególnym uwzględnieniem separacji membranowej

Jest wiele technologii uzdatniania biogazu, które osiągnęły dojrzałość komercyjną. Są to: (i) absorpcja fizyczna (płuczka wodna), (ii) absorpcja chemiczna (absorpcja aminowa), (iii) adsorpcja zmiennociśnieniowa (PSA), (iv) separacja kriogeniczna oraz (v) separacja membranowa^{1, 5, 44–52)}. Chociaż wszystkie dojrzałe technologie pozwalają osiągnąć wymaganą czystość (>95% mol CH₄), różnią się one znacznie pod względem zużycia energii, strat metanu, nakładów inwestycyjnych i operacyjnych (CAPEX/OPEX), śladu węglowego, zużycia chemikaliów i zarządzania strumieniem odpadów. Najważniejsze technologie uzdatniania biogazu zostały przedstawione w tabeli 1. Wśród nich szczególnie obiecującą i szybko rozwijającą się metodą uzdatniania, uzupełniającą i konkurującą z technikami konwencjonalnymi, stała się separacja gazów oparta na membranach. Rozdzielanie potential is substantial, driven by its agricultural biomass and municipal waste resources. Despite challenges such as high investment costs and legislative barriers, environmental and economic benefits make biomethane a promising renewable energy source for the country. Continued investment and support for biogas technology will be crucial to realise this potential and achieving energy security and sustainability goals^{39–43)}.

Overview of biogas upgrading technologies with an emphasis on membrane separation

A spectrum of technologies for biogas upgrading has been advanced to commercial maturity, which are: (i) physical absorption (i.e. water scrubbing); (ii) chemical absorption (i.e. amine scrubbing); (iii) adsorption (i.e. pressure swing adsorption -PSA); (iv) cryogenic separation; and (v) membrane separation^{1, 5, 44–52)}. While all mature technologies can achieve the requisite purity (>95% mol. CH₄), they differ significantly in terms of energy consumption, methane loss, capital and operational expenditure (CAPEX/OPEX), footprint, chemical usage, and waste stream management. The main biogas upgrading technologies are summarized in Table 1. Among these, membrane-based gas separation has emerged as a particularly promising and rapidly advancing upgrading method, complementing and competing with conventional techniques. Separation of the main biogas components (CH₄ and CO₃) in a membrane includes three sequential steps involved in the process (sorption, diffusion, and desorption)⁵³⁾. The general overview of the process is presented in Fig. 2. Technological advances, especially in the development of high-performance gas-permeable polymers and module design, have substantially improved the efficiency and cost-effectiveness of membrane purification systems^{54–56)}.

Membrane separator units offer distinct advantages: they are compact, modular, have no moving parts within the separation unit, produce no liquid waste streams, and can be easily modulated to follow variations in biogas flow rate (quick on/off cycles). They typically require less electrical energy than cryogenic or PSA systems and do not need chemical reagents⁵⁷⁾. Recent studies, such as the development of robust thin-film composite polyamide membranes, show potential for upgrading raw biogas with high levels of H,S and humidity directly, potentially eliminating or reducing the need for extensive pretreatment steps^{58, 59)}. The core principle of polymer membranes is the solution-diffusion mechanism, which requires a compromise between permeability (the rate of gas flow through the membrane) and selectivity (the ability to separate one gas from another). Furthermore, achieving high methane recovery rates requires operating at significant feed pressures often, necessitating robust and energy intensive compression, which contributes to operational costs. The membrane modules themselves, often based on high performance polyimides

przemysł 104/9 (2025)

Tabela 1. Najważniejsze technologie uzdatniania biogazu

<i>Technology/</i> Technologia	<i>Principle/</i> Zasada działania	Advantages/ Korzyści	Limitations/ Ograniczenia	
Water scrubbing/ Płuczka wodna	physical absorption/ absorpcja fizyczna	mature, simple, non-hazardous solvent, high CH_4 recovery/ dojrzała technologia, prosta, bezpieczne rozpuszczalniki, duży odzysk CH_4	water-intensive, methane slip in off-gas, large footprint/duże zużycie wody, ulatnianie się metanu w gazach odlotowych, duży ślad ekologiczny	
Amine scrubbing/ Płukanie aminowe	chemical absorption/ absorpcja chemiczna	high CO ₂ removal, tolerant to feed fluctuations/ wysoka redukcja CO ₂ , odporność na zmiany składu dostarczanego surowca	high regeneration energy, solvent degra- dation, corrosion/ wysoka energia regene- racji, degradacja rozpuszczalnika, korozja	
PSA/VSA	adsorption/ adsorpcja	dry process, modular, no chemicals, high purity/ proces suchy, modułowość, bez użycia środków chemicznych, wysoka czystość	sensitive to feed (H ₂ O, H ₂ S), adsorbent ageing, CH ₄ loss in tail gas/ wrażliwość na składniki zasilające (H ₂ O, H ₂ S), starzenie się adsorbentu, straty CH ₄ w gazie odlotowym	
Cryogenic/ Proces kriogeniczny	distillation/ destylacja	very high purity, products liquid CO ₂ / bardzo wysoka czystość, wytwarza ciekły CO ₂	very high energy, complex pre-treatment, high CAPEX/ bardzo duże zapotrzebowa- nie na energię, złożona obróbka wstępna, wysokie nakłady inwestycyjne	
Membrane separation/ Separacja membranowa	permeability/selectivity/ przepuszczalność/selek- tywność	compact, modular, no chemicals, easy control/kompaktowa, modułowa, bez chemikaliów, łatwa w obsłudze	compression energy, membrane cost, trade- -off selectivity/permeability/ energia sprę- żania, koszt membrany, kompromis między selektywnością a przepuszczalnością	

głównych składników biogazu (CH₄ i CO₂) w membranie obejmuje trzy kolejne etapy procesu (sorpcję, dyfuzję i desorpcję)⁵³⁾. Ogólny przegląd procesu przedstawiono na rys. 2. Postęp technologiczny, zwłaszcza w zakresie rozwoju wysokowydajnych polimerów przepuszczających gaz oraz projektowania modułów, znacznie poprawił

wydajność i opłacalność systemów oczyszczania membranowego^{54–56)}.

Separatory membranowe mają wyraźne zalety: są kompaktowe, modułowe, nie mają ruchomych części wewnątrz urządzenia separującego, nie wytwarzają strumieni odpadów płynnych i można je łatwo modulować w celu dostosowania do zmian natężenia przepływu biogazu (szybkie cykle włączania/ wyłączania). Zazwyczaj wymagają one mniej energii elektrycznej niż systemy kriogeniczne lub PSA i nie potrzebują stosowania odczynników chemicznych⁵⁷⁾. Najnowsze badania, takie jak opracowanie wytrzymałych cienkowarstwowych membran kompozytowych z poliamidu, wskazują na możliwość bezpośredniego uzdatniania surowego biogazu o dużej

or other advanced polymers, remain high-cost materials, contributing to a significant capital investment⁶⁰⁾.

The global adoption of membrane technology is uneven, reflecting regional preferences, historical development, and economic considerations. For example, in France, membranes have captured a dominant market share, accounting

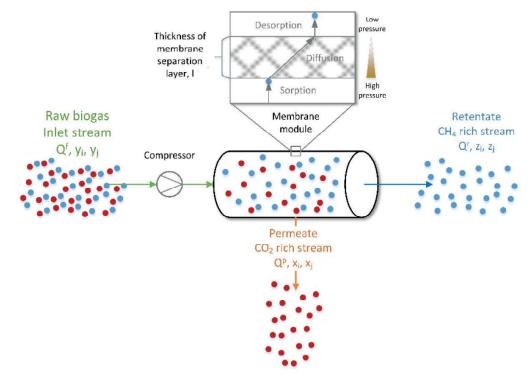


Fig. 2. Diagram of the membrane separation process for purifying biogas (CH $_4$ CO $_2$) where 3 fundamental steps (sorption, diffusion and desorption) are shown alongside the defining process variables: gas flow rates (Q) and mole fractions for key components i and $j^{(S)}$

Rys. 2. Schemat procesu separacji membranowej do oczyszczania biogazu (CH_4/CO_2) , na którym przedstawiono 3 fundamentalne etapy (sorpcję, dyfuzję i desorpcję) wraz z podstawowymi parametrami procesu: natężenia przepływu gazu (Q) oraz ułamków molowych kluczowych składników i oraz j^{53}

zawartości H₂S i wilgotności, co potencjalnie eliminuje lub ogranicza konieczność stosowania rozbudowanych etapów wstępnej obróbki^{58, 59)}. Podstawową zasadą działania membran polimerowych jest mechanizm dyfuzji roztworu, który wymaga kompromisu między przepuszczalnością (szybkością przepływu gazu przez membranę) a separacją (zdolnością do oddzielania jednego gazu od drugiego). Ponadto osiągnięcie wysokich wskaźników odzysku metanu wymaga często pracy przy znacznym ciśnieniu zasilania, co z kolei wymaga znaczącego i energochłonnego sprężania, a to przyczynia się do wzrostu kosztów operacyjnych. Same moduły membranowe, często oparte na wysokowydajnych poliimidach lub innych zaawansowanych polimerach, pozostają materiałami kosztownymi, co przekłada się na znaczne nakłady inwestycyjne⁶⁰⁾.

Wdrażanie technologii membranowej jest nierównomierne, co odzwierciedla preferencje regionalne i względy ekonomiczne. Na przykład we Francji membrany zdobyły dominujący udział w rynku, stanowiąc ok. 84% wszystkich instalacji do uzdatniania biometanu. W Niemczech, największym rynku biometanu w Europie, membrany mają jedynie ok. 10% udziału, a dominują sprawdzone technologie, takie jak płuczka wodna i PSA, ze względu na ich sprawdzoną skuteczność i różne czynniki ekonomiczne⁶¹⁾.

Przemysłowe studia przypadków i zaawansowane projekty w przekonujący sposób wykazały, że kaskady membranowe (systemy dwustopniowe lub trójstopniowe z recyrkulacją strumieni) mogą niezawodnie spełniać rygorystyczne wymagania jakościowe dotyczące zatłaczania biometanu do sieci gazu ziemnego, osiągając wydajność odzysku CH₄ przekraczającą 99%^{57, 58)}. Pomimo tej udowodnionej efektywności technicznej, w opublikowanej literaturze istnieje znaczna luka. Większość danych dotyczących efektywności i ekonomiki z lat 2021–2024 pochodzi z badań przeprowadzonych na skalę pilotażową lub z konkretnych instalacji przemysłowych. Kompleksowe, porównawcze analizy techniczno-ekonomiczne pełnowymiarowych systemów membranowych, w szczególności te, które porównują różne konfiguracje wielostopniowe ze wspólną podstawą odniesienia, są nadal rzadkością. Analiza kosztów konsekwentnie wskazuje moduły membranowe i sprężarki wysokociśnieniowe jako główne czynniki wpływające na nakłady inwestycyjne, chociaż ich koszty operacyjne w przeliczeniu na metr sześcienny w warunkach normalnych (Nm³) wyprodukowanego biometanu są często konkurencyjne^{57, 60)}.

Część badawcza

Metodyka badań

Określenie scenariusza

W badaniu przyjęto założenie, że wstępne oczyszczenie biogazu zostało przeprowadzone w celu usunięcia H₂S, H₂O i siloksanów przed sekcją membran. Proces wstępnego

for approximately 84% of all biomethane upgrading facilities, which are favoured for their simplicity and modularity. On the contrary, in Germany, Europe's largest biomethane market, membranes hold only about a 10% share, where established technologies like water scrubbing and PSA dominate due to their proven track record and different economic drivers⁶¹.

Industrial case studies and sophisticated multistage designs have convincingly demonstrated that membrane cascades (two-stage or three-stage systems with recycle streams) can reliably achieve stringent pipeline-quality specifications with CH₄ recovery rates exceeding 99%^{57, 58)}. Despite this proven technical viability, there is a significant gap in the published literature. Most of the performance and economic data from 2021-2024 are derived from pilot-scale studies or specific industrial installations. Comprehensive, comparative technoeconomic analyses of full-scale membrane systems, particularly those benchmarking various multistage configurations against a common baseline, remain scarce. Cost analysis consistently identifies membrane modules and high-pressure compressors as the primary drivers of CAPEX, although their operational costs per normal cubic metre (Nm^3) of produced biomethane are often competitive^{57, 60)}.

Studies

Methodology

Scenario definition

For this study, pretreatment was assumed as already performed to control H,S, H,O, and siloxanes before the membrane train. Pretreatment includes desulfurization (to ≤ 7 mg/m³ H₂S), drying to the pipeline dew point, and optional activated-carbon beds for siloxanes. This pretreatment extends membrane life, reduces plasticization risk, and stabilizes WI/HSN calculations by keeping the gas dry and within specification. Biogas with inlet flow rate Q =200 Nm³/h was introduced at temperature T = 20°C and a pressure P = 1.02 bar into the designed installation for the upgrading to biomethane specifications. Since membrane separation occurs under high pressure conditions, the biogas is first compressed using a compressor with an efficiency $\eta = 70\%$. To increase the gas pressure by approximately P = 19 bar, the compressor requires an energy input, and the compression process results in a significant increase in biogas temperature. Due to the potential for membrane damage from exposure to high temperatures (approximately T = 400°C), a cooler is installed after the compressor to reduce the gas temperature to the value required for the process T = 40°C. Table 2, presents the molar composition introduced into the feed stream (inlet).

The core separation unit is a dense polymeric membrane operated under the solution-diffusion model, expressed in permeance form. The molar flux of component is

$$J_{i} = \frac{P_{i}}{l} \left(p_{i,feed} - p_{i,perm} \right) = \Pi_{i} \left(p_{i,feed} - p_{i,perm} \right) \tag{1}$$

oczyszczania obejmuje odsiarczanie (do ≤7 mg/m³ H₂S), suszenie do punktu rosy rurociągu oraz opcjonalnie warstwy węgla aktywnego do usuwania siloksanów. Ta obróbka wstępna wydłuża żywotność membrany, zmniejsza ryzyko plastyfikacji i stabilizuje obliczenia WI/HSN poprzez utrzymywanie gazu w stanie suchym i zgodnym ze specyfikacją. Biogaz o natężeniu przepływu na włocie $Q = 200 \text{ Nm}^3/\text{h}$, temp. $T = 20^{\circ}$ C i pod ciśnieniem P = 1,02 bar został wprowadzony do zaprojektowanej instalacji w celu uzdatnienia jego parametrów jakościowych do specyfikacji biometanu. Ponieważ separacja membranowa odbywa się w warunkach wysokiego ciśnienia, biogaz jest najpierw sprężany za pomocą sprężarki o wydajności $\eta = 70\%$. Aby zwiększyć ciśnienie gazu o ok. P = 19 bar, sprężarka wymagała dostarczenia energii, a proces sprężania powodował znaczny wzrost temperatury biogazu. Ze względu na możliwość uszkodzenia membrany w wyniku ekspozycji na wysokie temperatury (ok. T = 400°C), za sprężarką zainstalowano chłodnicę, która obniżała temperaturę gazu do wartości wymaganej dla procesu T = 40°C. W tabeli 2 przedstawiono skład molowy biogazu wprowadzonego do strumienia zasilającego (wlot).

Główną jednostką separacyjną była membrana polimerowa działająca zgodnie z modelem dyfuzji roztworu, wyrażonym w postaci przepuszczalności. Strumień molowy składnika *i* określony jest wzorem (1):

$$J_{i} = \frac{P_{i}}{l} \left(p_{i,feed} - p_{i,perm} \right) = \Pi_{i} \left(p_{i,feed} - p_{i,perm} \right)$$
 (1)

w którym J_i jest podany w mol/m²s, P_i oznacza przepuszczalność, mol/m²sPa, l grubość warstwy selektywnej, m, p ciśnienia cząstkowe na powierzchni membrany, a Π_i jest przenikalnością, często podawaną w GPU (jednostka przepuszczalności gazowej); 1 GPU = 10^{-6} cm³(STP)/cm²s·cmHg. Idealna selektywność pary gazów wynosi:

$$\alpha_{i/j}^{ideal} = \frac{P_i}{P_j} = \frac{\Pi_i}{\Pi_j}$$
 (2)

Przepuszczalność/przenikalność zależy od składu chemicznego membrany, powierzchni efektywnej i liczby zainstalowanych modułów.

Wydajność procesu można podsumować poprzez określenie zawartości metanu w retentacie:

$$R_{CH_4} = \frac{\dot{n}_{CH_{4,ret}}}{\dot{n}_{CH_{4,feed}}} \tag{3}$$

Jednostopniowy układ można opisać zależnością:

$$\dot{n}_{k,feed} = \dot{n}_{k,ret} + \dot{n}_{k,perm} \qquad y_{k,ret} = \frac{\dot{n}_{k,ret}}{\sum_{j} \dot{n}_{j,ret}} \qquad y_{k,perm} = \frac{\dot{n}_{k,perm}}{\sum_{j} \dot{n}_{j,perm}} \tag{4}$$

Co można przełożyć bezpośrednio na układy kaskad z recyrkulacją strumienia (S2/S3).

Na potrzeby rozważanych scenariuszy przyjęto podstawowe parametry membrany, które przedstawiono w tabeli 3. Zastosowanie membran umożliwia rozdzielenie składników biogazu na dwa strumienie: retentat, czyli gaz, który nie przenika przez membranę i charakteryzuje się wysoką zawartością metanu, oraz permeat (biogaz ubogi w metan), który składa się głównie z ditlenku węgla. Do rozdzielenia składników biogazu użyto membrany poliimidowej, której

Table 2. Biogas composition at the inlet

Tabela 2. Skład biogazu na wejściu do instalacji uzdatniania

<i>Biogas component</i> / Składnik biogazu	Concentration/ Stężenie, % mol		
Methane/ Metan	61.0		
Carbon dioxide/ Ditlenek węgla	38.8		
Oxygen/ Tlen	0.1		
Nitrogen/ Azot	0.1		

where J_i is in mol/m²s, P_i is the permeability, mol/m²sPa, l is the selective-layer thickness, m, p are the partial pressures at the membrane surfaces, and Π_i is the permeance (often reported in GPU, gas permeation unit); l GPU = 10^{-6} cm³(STP)/cm²s·cmHg . Ideal gas-pair selectivity is:

$$\alpha_{i/j}^{ideal} = \frac{P_i}{P_j} = \frac{\Pi_i}{\Pi_j} \tag{2}$$

Permeability/permeance depend on membrane chemistry, effective area, and the number of modules installed.

Process performance is summarized by the overall methane recovery to the retentate:

$$R_{CH_4} = \frac{\dot{n}_{CH_{4,ret}}}{\dot{n}_{CH_{4,feed}}} \tag{3}$$

Single-stage component balances are:

$$\dot{n}_{k,feed} = \dot{n}_{k,ret} + \dot{n}_{k,perm} \qquad y_{k,ret} = \frac{\dot{n}_{k,ret}}{\sum_{j} \dot{n}_{j,ret}} \qquad y_{k,perm} = \frac{\dot{n}_{k,perm}}{\sum_{j} \dot{n}_{j,perm}} \tag{4}$$

and these extend straightforwardly to cascades with recycle (S2/S3).

For the purposes of the scenarios considered, the basic membrane parameters were adopted and are listed in Table 3. The application of membranes enables the separation of biogas components into two streams: the retentate, which is the gas that does not permeate through the membrane and characterised by a high methane content; and the permeate (methane-lean biogas), which consists primarily of carbon dioxide. A polyimide membrane was used for the separation of the biogas components, the selectivity of which is presented in Table 4. Simulations of the biogas upgrading plant using the membrane separation method were performed with Bryan Research & Engineering Promax 6.0 software. The process parameters for the three scenarios considered (membrane configuration S1-S3) under various operating conditions were calculated using the Peng-Robinson equation of state. The selection criteria were: (i) high process efficiency (Wobbe index and power demand) and (ii) high quality biomethane as the final product (methane concentration >95% mol).

Single-stage membrane separation system for biogas upgrading (scenario S1)

In the case of applying a single-stage membrane separation (scenario S1), the system configuration consists of a single membrane separator unit which fractionates the inlet biogas into two distinct streams: retentate and permeate (Fig. 3). A characteristic drawback of this method is selektywność przedstawiono w tabeli 4. Symulacje instalacji do uzdatniania biogazu z wykorzystaniem metody separacji membranowej przeprowadzono przy użyciu oprogramowania Bryan Research & Engineering Promax 6.0. Parametry procesu dla trzech rozważanych scenariuszy (konfiguracja membrany S1–S3) w różnych warunkach roboczych zostały oznaczone w oparciu o równanie stanu Penga i Robinsona (PR). Analizie poddano następujące parametry: (*i*) wydajność procesu (liczba Wobbego i zapotrzebowanie na energię) oraz (*ii*) jakość biometanu jako produktu końcowego (stężenie metanu > 95% mol).

Jednostopniowy system separacji membranowej do uzdatniania biogazu (scenariusz S1)

W przypadku zastosowania jednostopniowej separacji membranowej (scenariusz S1) konfiguracja systemu składa się z pojedynczej jednostki separatora membranowego, która rozdziela biogaz (strumień na wejściu do instalacji) na dwa odrębne strumienie: retentat i permeat (rys. 3). Wadą tego układu są znaczne straty metanu, które mogą osiągnąć poziom nawet 15%⁵⁶⁾. Analizie poddano wpływ ciśnienia roboczego na kilka kluczowych parametrów efektywności: jakość uzyskanego biometanu, zawartość metanu w produkcie końcowym, straty metanu po stronie permeatu oraz całkowite zapotrzebowanie na energię.

Dwustopniowy system separacji membranowej do uzdatniania biogazu (scenariusz S2)

Aby zmniejszyć straty metanu i zwiększyć jego odzysk, strumień permeatu z jednostopniowej separacji membranowej skierowano do drugiej jednostki

Table 3. Parameters used in the membrane separators

Tabela 3. Podstawowe parametry membran

Tabeta 5. Podstawowe parametry membran							
Parameter/ Parametr	Membrane separator/ Separator membranowy						
1 arameter/ 1 arameti	MSEP-100, MSEP-300	MSEP-200					
Module area/ Powierzchnia modułu, m ²	40	35					
<i>Module count/</i> Liczba modułów	5	2					
Calculated area/ Po- wierzchnia obliczona, m ²	200	70					
Flow configuration/ Konfiguracja przepływu	cross flow/ przepływ krzyżowy						
Retentate pressure drop/ Spadek ciśnienia reten- tatu, bar	1						
Initial permeate pressure/ Początkowe ciśnienie permeatu, bar	2						
Permeate pressure drop/ Spadek ciśnienia per- meatu, bar	0.1						

Table 4. Properties of the polyimide membrane (USP 5407466)

Tabela 4. Właściwości membrany poliimidowej (USP 5407466)

<i>Permeance</i> / Przenikalność , GPU		<i>Membrane selectivity</i> / Selektyw- ność membrany, α _{i/j}			
CH ₄	CO ₂	H_2S	CO ₂ /CH ₄	H ₂ S/CH ₄	CO ₂ /H ₂ S
2.46	101.95	24.95	41.53	10.16	4.09

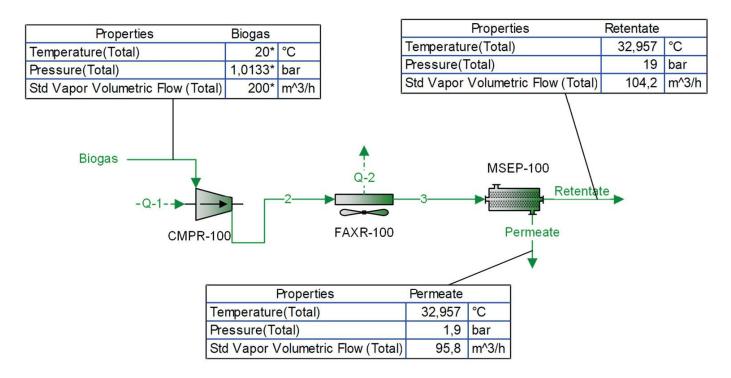


Fig. 3. Process flow diagram (PFD) of single-stage membrane separation system for biogas upgrading to biomethane Rys. 3. Schemat technologiczny jednostopniowej separacji membranowej do uzdatniania biogazu do biometanu

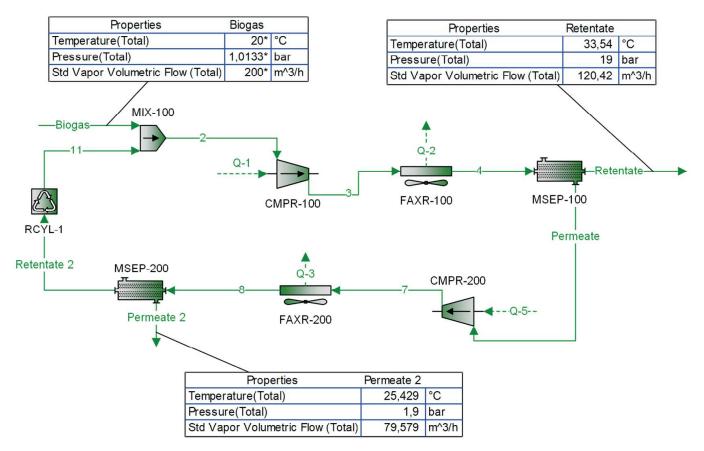


Fig. 4. Process flow diagram (PFD) of two-stage membrane separation system for biogas upgrading to biomethane Rys. 4. Schemat technologiczny dwustopniowej separacji membranowej do uzdatniania biogazu do biometanu

separatora membranowego. Permeat powstały w pierwszym etapie separacji membranowej został sprężony do wymaganego ciśnienia procesowego. Ciśnienie robocze zmieniano w zakresie 5–30 bar w celu przeprowadzenia analizy. Temperatura na wejściu do separatora membranowego została obniżona do 40°C za pomocą chłodnicy. Mieszanina gazu została następnie wprowadzona do drugiego separatora membranowego (MSEP-200) (rys. 4). Ponieważ natężenie przepływu strumienia permeatu było znacznie mniejsze niż natężenie przepływu surowego biogazu na wejściu do separatora membranowego (MSEP-100), zmniejszono liczbę zainstalowanych modułów membranowych (całkowita powierzchnia aktywna membrany 70 m²). Po rozdzieleniu mieszaniny gazowej na dwa strumienie, powstały retentat (strumień Retentate 2) został skierowany do głównego strumienia procesu w celu dalszego uzdatniania.

Trójstopniowy system separacji membranowej do uzdatniania biogazu (scenariusz S3)

Trójstopniowy proces separacji membranowej umożliwia produkcję biometanu o wysokiej czystości (osiągającej 99,5% mol) poprzez integrację dodatkowego, trzeciego separatora membranowego (MSEP-300), który dalej przetwarza strumień retentatu z separatora membranowego (MSEP-100). Jak pokazano na rys. 5, strumień

the significant loss of methane, which can reach levels of up to 15%⁵⁶⁾. The simulations investigated the influence of operating pressure on several key performance parameters: the quality of the biomethane obtained, the methane content in the final product, the losses of methane losses on the permeate side, and the overall energy demand.

Two-stage membrane separation system for biogas upgrading (scenario S2)

To reduce methane losses and enhance their recovery, the permeate stream from the single-stage membrane separation was directed to a second membrane separator unit. The permeate generated in the first stage membrane separation was compressed to the required process pressure. Operating pressure is varied across 5–30 bar for analysis. Subsequently, its temperature was reduced to 40°C by means of an installed cooler. The gas mixture is then introduced into the second membrane separator (MSEP-200) (Fig. 4). Because the flow rate of the permeate stream was significantly lower than the flow rate of raw biogas at the feed to membrane separator (MSEP-100), the number of installed membrane modules was reduced, corresponding to a total active membrane area of 70 m². Following separation of the gas mixture into two streams, the resulting retentate is recirculated back into the main process stream for further treatment.

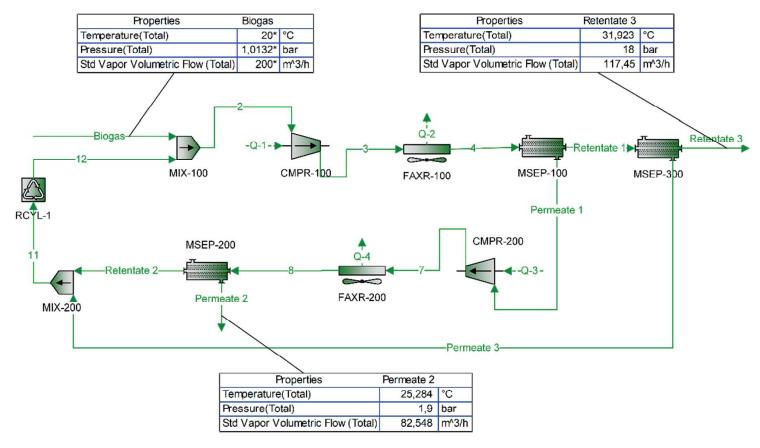


Fig. 5. Process flow diagram (PFD) of three-stage membrane separation system for biogas upgrading to biomethane

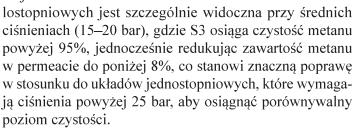
Rys. 5. Schemat technologiczny trójstopniowej separacji membranowej do uzdatniania biogazu do biometanu

permeatu 3 jest mieszany ze strumieniem retentatu 2 i ponownie wprowadzany do systemu w celu dalszego uzdatniania.

Wyniki analizy

Aby wykorzystać biometan jako paliwo w transporcie lub wprowadzić go do sieci gazu ziemnego, musi on spełniać określone wymagania jakościowe, które różnią się w poszczególnych krajach. W Polsce rośnie zainteresowanie produkcją biometanu i podłączaniem zakładów produkcyjnych do sieci gazowej. Jest to spowodowane przede wszystkim chęcią zwiększenia bezpieczeństwa energetycznego, przestrzegania zasad gospodarki o obiegu zamkniętym oraz ograniczenia emisji ditlenku węgla. Biometan przeznaczony do wprowadzenia do sieci musi spełniać rygorystyczne normy jakościowe dla paliw gazowych, określone w rozporządzeniu¹⁸⁾. Zgodnie z normą techniczną ST-IGG-3501:2019, najważniejszymi parametrami określającymi jakość biometanu są zawartość siarkowodoru (H₂S) i wartość opałowa⁶²⁾. Stężenie siarkowodoru H₂S nie może przekraczać 7,0 mg/m³, a wartość opałowa nie może być niższa niż 34,0 MJ/m³ dla gazu ziemnego o wysokiej zawartości metanu z grupy E, który wymaga również liczby Wobbego z zakresu 45,0-56,9 MJ/m³.

Three-stage membrane separation system for biogas upgrading (scenario S3)


The three-stage membrane separation process enables the production of high-purity biomethane (reaching 99.5% mol in the scenario S3) through the integration of an additional third membrane separator (MSEP-300) that further treats the retentate stream from the membrane separator (MSEP-100). As illustrated in Fig. 5, the Permeate 3 stream is mixed with the Retentate 2 stream and recirculated back into the system for further processing.

Results analysis

To utilise biomethane as a transport fuel or injected into the natural gas grid, it must meet specific quality requirements that vary significantly between countries. In Poland, there is growing interest in biomethane production and connecting production facilities to the gas grid. This is driven primarily by the desire to enhance energy security, comply with circular economy principles, and reduce carbon dioxide emissions. Biomethane intended for grid injection must satisfy stringent quality standards for gaseous fuels, as specified in the Regulation of the Minister on Detailed Conditions for the Functioning of the Gas Grid¹⁸. According to the technical standard ST-IGG-3501:2019, the most critical parameters defining biomethane quality

Odzysk metanu

Jak pokazano na rys. 6, stężenie metanu w retentacie wzrasta wraz z ciśnieniem roboczym we wszystkich scenariuszach, przy czym najwyższą czystość osiąga układ trójstopniowy (S3) (99,57% przy ciśnieniu 30 bar), a następnie układy dwustopniowy (S2) i jednostopniowy (S1). Poprawie jakości retentatu towarzyszy spadek zawartości metanu w permeacie we wszystkich rozpatrywanych scenariuszach, przy czym S3 wykazuje lepszy odzysk metanu poprzez utrzymanie najniższych strat metanu w permeacie (12,35% przy 30 bar) w porównaniu z S1 (30,87%) i S2 (30,99%). Zwiększona efektywność separacji metanu dla układów wie-

Tę przewagę wydajnościową należy oceniać w kontekście znacznego zapotrzebowania na energię związanego z konfiguracjami wielostopniowymi, ponieważ S3 wymaga ok. 73% więcej energii niż S1 przy ciśnieniu 30 bar (78,8 kW w porównaniu z 45,5 kW) ze względu na dodatkowe wymagania dotyczące sprężania, co podkreśla krytyczny aspekt równowagi między jakością produktu a efektywnością energetyczną w systemach uzdatniania biogazu opartych na membranach.

Zapotrzebowanie na moc sprężania

Moc sprężania dla gazu doskonałego jest przedstawiona za pomocą równania (5):

$$\dot{W} = \left(\frac{\dot{n} \cdot R \cdot T_1}{\eta_c}\right) \cdot \frac{\kappa}{\kappa - 1} \cdot \left[\left(\frac{P_2}{P_1}\right)^{(\kappa - 1)/\kappa} - 1\right] \tag{5}$$

w którym noznacza molowy strumień gazu, mol/s, R uniwersalną stałą gazową, $J/(\text{mol} \cdot \text{K})$, T_1 temperaturę gazu na wlocie, K, η_c sprawność izentropową sprężarki, $\kappa = cp/cv$ to wykładnik adiabatyczny gazu, a P_1 i P_2 odpowiadają ciśnieniu na odpowiednio wlocie i wylocie sprężarki, Pa. Moc W ma wymiar kW.

Moc wymagana w trzech scenariuszach w odniesieniu do ciśnienia roboczego została przedstawiona na rys. 7 i pokazuje wyraźny związek między wymaganiami mocy a jakością biometanu na wyjściu. Separacja jednostopniowa (S1) charakteryzuje się najniższym zużyciem energii,

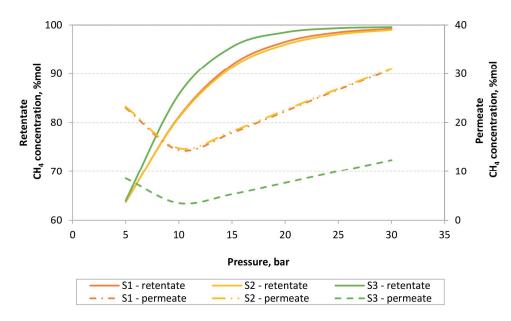


Fig. 6. The effect of operating pressure on the CH_4 concentration in the retentate (final product) and the CH_4 concentration in the permeate (methane losses) for the considered scenarios S1, S2 and S3

Rys. 6. Wpływ ciśnienia operacyjnego na stężenie CH₄ w strumieniu retentatu (produkt końcowy) oraz stężenie CH₄ w strumieniu permeatu (straty metanu) dla rozpatrywanych scenariuszy S1, S2 i S3

are the hydrogen sulfide content and the calorific value⁶²⁾. The hydrogen sulfide (H_2S) concentration must not exceed 7.0 mg/m³, while the gross calorific value must not be no less than 34.0 MJ/m³ for the high-methane natural gas of Group E, which also requires a Wobbe index between 45.0 MJ/m³ and 56.9 MJ/m³.

Methane recovery

As shown in Fig. 6, the concentration of retentate methane increases with operating pressure for all configurations, with the three-stage system (S3) achieving the highest purity (99.57% at 30 bar) followed by two-stage systems (S2) and single-stage (S1) systems. This improvement in retentate quality is accompanied by a corresponding decrease in permeate methane content in all configurations, with S3 demonstrating superior methane recovery by maintaining the lowest permeate methane losses (12.35% at 30 bar) compared to S1 (30.87%) and S2 (30.99%). The improved separation efficiency of multistage systems is particularly evident at intermediate pressures (15–20 bar), where S3 achieves >95% methane purity while simultaneously reducing permeate methane content to below 8%, representing a significant improvement over single-stage operation, which requires >25 bar to reach comparable purity levels.

This performance advantage must be evaluated against the substantial power demand associated with multistage configurations, as S3 require approximately 73% more power than S1 at 30 bar (78.8 kW vs. 45.5 kW) due to additional compression requirements, highlighting the critical point between product quality and energy efficiency in membrane-based biogas upgrading systems.

wynoszącym od ok. 16,7 kW do 45,5 kW przy wzroście ciśnienia od 5 do 30 bar, co czyni ją opcją najbardziej energooszczędną. Separacja trójstopniowa (S3) wymaga znacznie większej mocy zasilania, wynoszącej 18,1-78,8 kW w tym samym zakresie ciśnień, ze względu na dodatkowe zapotrzebowanie na energię sprężarki wtórnej (CMPR-200), niezbędnej do utrzymania wymaganych poziomów ciśnienia na wszystkich etapach separacji. System dwustopniowy (S2) charakteryzuje się pośrednim zapotrzebowaniem na energię, w granicach

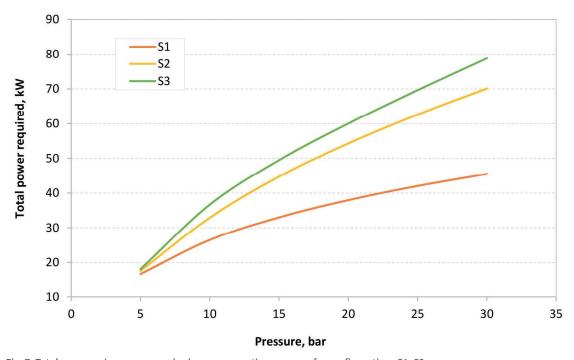


Fig. 7. Total compression power required versus operating pressure for configurations S1–S3
Rys. 7. Całkowita wymagana moc sprężania w funkcji ciśnienia roboczego dla scenariuszy S1–S3

17,6–70,1 kW. To zapotrzebowanie na energię (a ostatecznie zużycie energii) w systemach wielostopniowych należy porównać z ich doskonałą sprawnością w zakresie odzyskiwania metanu i zgodności z liczbą Wobbego, zwracając szczególną uwagę na fakt, że S3 osiąga najwyższą czystość produktu (99,57% CH₄ przy ciśnieniu 30 bar) i najkorzystniejsze wartości liczby Wobbego (50,24 MJ/m³ przy 30 bar), spełniając normy gazowe grupy E przy niższych wymaganiach ciśnieniowych w porównaniu z innymi konfiguracjami.

Liczba Wobbego i wartość opałowa

W celu monitorowania zgodności uzdatnionego biometanu do wymaganych parametrów sieci gazu ziemnego, przeprowadzono analizę liczby Wobbego strumienia produktu w zależności od ciśnienia roboczego dla różnych scenariuszy separacji (S1, S2, S3). Wyniki przedstawione na rys. 8 pokazują, że układ membran S3 zapewnia jakość biogazu zgodną z wymaganiami sieci przy znacznie niższych ciśnieniach roboczych w porównaniu z S1 i S2. Zmniejsza to koszty energii związane ze sprężaniem, jednocześnie zwiększając elastyczność operacyjną. Stabilna i ciągła praca przy niższych ciśnieniach ma kluczowe znaczenie dla utrzymania stałego dopływu energii do sieci i przestrzegania rygorystycznej zasady dziennej zmienności kaloryczności wynoszącej ±4%. Wymaga to monitorowania w czasie rzeczywistym zarówno wartości opałowej brutto (wyższej wartości opałowej, HHV_{mix}), jak i liczby Wobbego (WI), które oblicza się wg, odpowiednio, równania (6):

$$HHV_{mix} = \sum_{i} y_i HHV_i \tag{6}$$

Compression power demand

Compression power for ideal-gasis given with equation (5):

$$\dot{W} = \left(\frac{\dot{n} \cdot R \cdot T_1}{\eta_c}\right) \cdot \frac{\kappa}{\kappa - 1} \cdot \left[\left(\frac{P_2}{P_1}\right)^{(\kappa - 1)/\kappa} - 1 \right] \tag{5}$$

with n the molar flow rate of the gas, mol/s, R the universal gas constant, $J/(mol \cdot K)$, T_1 the inlet gas temperature, K, η_c the isentropic efficiency of the compressor, $\kappa =$ cp/cv the adiabatic exponent of the gas, while P₁ and P₂ correspond to the inlet and outlet pressures of the compressor, Pa, respectively. Widenotes the compression power, kW. The power required across the three scenarios in relation to operational pressure are presented in Fig. 7 and reveals a clear link between power requirements and product gas quality. Single-stage separation (S1) demonstrates the lowest power consumption, ranging from approximately 16.7 kW to 45.5 kW as pressure increases from 5 to 30 bar, making it the most energy efficient option. In contrast, the three-stage configuration (S3) requires significantly higher power input, ranging from 18.1 kW to 78.8 kW over the same pressure range, due to the additional energy demands of the secondary compressor (CMPR-200) needed to maintain the required pressure levels throughout the multiple separation stages. The twostage system (S2) shows intermediate energy requirements, consuming between 17.6 and 70.1 kW. This power demand (and finally energy consumption) in multistage systems must be weighed against their superior performance in methane recovery and Wobbe index compliance, particularly noting that S3 achieves the highest product purity (99.57% CH, at 30 bar) and most favorable Wobbe index values (50.24 MJ/m³ at 30 bar), meeting Group E gas standards at lower pressure requirements compared to the other configurations.

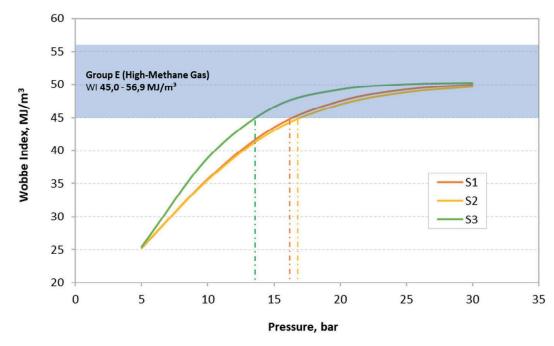


Fig. 8. The effect of operating pressure on the Wobbe index of the final product (retentate stream) for different membrane separation scenarios (S1, S2, S3)

Rys. 8. Wpływ ciśnienia operacyjnego na liczbę Wobbego produktu końcowego (strumienia retentatu) dla różnych scenariuszy separacji membranowej (S1, S2, S3)

w którym oznacza ułamek molowy (lub objętościowy) składnika i, a HHV_i wartość opałową składnika i, MJ/m^3 , w warunkach standardowych, oraz równania (7):

$$WI = \frac{{}^{HHV}{mix}}{\sqrt{a}} \tag{7}$$

w którym WI oznacza liczbę Wobbego, MJ/m³, HHV wartość opałową brutto, a d gęstość względną. Monitorowanie tych parametrów umożliwia jednoczesne spełnienie wymagań normatywnych dotyczących gazu wysokometanowego grupy E. Integracja produkowanego biometanu z systemem dystrybucyjnym nie sprowadza się jednak wyłącznie do spełnienia specyfikacji jakościowych w punkcie wejścia do sieci. Proces ten wymaga ścisłej współpracy z operatorem systemu dystrybucyjnego (OSD), obejmującej m.in. wyznaczenie odpowiednich obszarów rozliczeniowych oraz analizę jakości gazu w całej sieci. Istotnym elementem staje się także wdrożenie zbiorczych punktów zatłaczania, które umożliwiają agregację biometanu od wielu producentów. Rozwiązanie to pozwala na utrzymanie stabilnej jakości średnioważonej w granicach określonych limitów regulacyjnych oraz ograniczenie wpływu zmienności parametrów charakterystycznych dla poszczególnych źródeł produkcji.

Wnioski

Rosnące zapotrzebowanie na gaz ziemny w połączeniu z rygorystycznymi przepisami dotyczącymi emisji ditlenku węgla stwarza szansę na rozwój rynku biometanu w Europie, zwłaszcza w Polsce. Potencjał produkcji biometanu w Polsce jest obecnie porównywalny z potencjałem Niemiec, a wykorzystanie odpadów rolniczych do produkcji

Wobbe index and heating value

Analysis of the Wobbe index of the product stream versus operating pressure for the different separation scenarios (S1, S2, S3) was performed to monitor grid compliance. Results presented in Fig. 8, shows that the S3 membrane configuration achieves grid-compliant gas quality at significantly lower operating pressures compared to S1 and S2. This capability reduces compression energy costs while enhancing operational flexibility. Stable and continuous operation at lower pressures is crucial for maintaining consistent energy input to the grid and complying with the stringent ±4% daily calorific

variation rule. This requires real-time monitoring of both the Gross Calorific Value (Higher Heating Value, HHV_{mix}) and the Wobbe index (WI), which are calculated as follows (eq. 6 and eq. 7):

$$HHV_{mix} = \sum_{i} y_i HHV_i \tag{6}$$

where y_i are mole (or volume) fractions and component, HHV_i is the gross calorific value of component i, MJ/m^3 , at standard conditions, and

$$WI = \frac{_{HHV_{mix}}}{\sqrt{a}} \tag{7}$$

where WI is the Wobbe index, MJ/m³, HHV is the gross calorific value, and d is the relative density. Monitoring these parameters ensures simultaneous adherence to the standards for Group E high-methane gas. Furthermore, successful grid integration extends beyond meeting quality specifications at the plant gate. It necessitates close coordination with the distribution system operator (DSO) to determine appropriate billing areas and understand baseline gas quality. The implementation of collective injection points, which aggregate biomethane from multiple producers, becomes essential for maintaining a stable weighted average quality within regulatory limits and mitigating variability from individual production sources.

Conclusions

The growing demand for natural gas, combined with stringent carbon emission regulations, creates a clear opportunity to expand the biomethane market in Europe, especially in Poland. In fact, Poland's biomethane producbiogazu dobrze wpisuje się w cele gospodarki o obiegu zamkniętym. W przeciwieństwie do wielu innych odnawialnych źródeł energii, biogaz/biometan zapewnia również stabilną produkcję energii, niezależną od pogody i pory dnia. Czynniki takie jak wsparcie polityczne, dostępność zasobów i stabilność operacyjna będą sprzyjać szybkiemu rozwojowi biometanu w polskim miksie energetycznym.

Uzdatnianie biogazu odbywa się najczęściej poprzez fizyczne oczyszczanie (płuczka wodna), absorpcję chemiczną (aminy) lub separację membranową. Ostatnie badania i rozwój tych technologii doprowadziły do znacznej poprawy efektywności procesów, umożliwiając produkcję biometanu o wysokiej czystości przy znacznie niższym zapotrzebowaniu na energię. Przedstawione wyniki wskazują, że separacja membranowa stanowi realną i efektywną metodę umożliwiającą spełnienie wymagań jakościowych sieci gazowej oraz obowiązujących w Polsce regulacji prawnych. W szczególności trójstopniowy układ membran (S3) zapewnił najwyższą czystość CH₄ (ok. 99,5% mol) i najniższe straty metanu. Sprawność procesu można by jeszcze bardziej zwiększyć, stosując membrany nowej generacji o wyższej selektywności CH₄/CO₂. W opisanych symulacjach wybrano membrany poliimidowe ze względu na ich opłacalność, dostępność i trwałość.

Pod względem ilościowym korzyści wynikające ze stosowania membran wielostopniowych są oczywiste. Na przykład przy ciśnieniu 30 bar konstrukcja trójstopniowa osiągnęła ok. 99,5% mol CH₄ przy tylko ok. 12,4% CH₄ w strumieniu odpadów (permeacie), podczas gdy system jednostopniowy (S1) osiągnął ok. 99,2% mol CH₄ przy ok. 30,9% CH₄ w permeacie (przy niższym ciśnieniu, 15 bar, S1 wyprodukował tylko 91,85% mol CH₄). To pokazuje, że dodanie etapów separacji znacznie zmniejsza straty metanu. Takie działanie (uzyskanie wysokiej czystości) wymaga większej energii sprężania (dodatkowe sprężarki).

Aby wprowadzić biometan do istniejącej sieci gazowej, konieczne jest dostosowanie jego parametrów do specyfikacji technicznych i wymagań sieci gazu ziemnego. Oznacza to dostosowanie parametrów, tj. skład, ciepło spalania, liczba Wobbego, do wymagań dotyczących gazu ziemnego. W niektórych przypadkach mogą być potrzebne dodatkowe rozwiązania techniczne (takie jak mieszanie lub wzbogacanie), tak by spełnić standardy operatora sieci, o ile końcowy gaz spełnia wszystkie wymagania operacyjne. Zwrócenie uwagi na te szczegóły, w połączeniu z postępami w zakresie modernizacji technologii i aspektów prawnych, będzie miało kluczowe znaczenie dla realizacji rozwoju potencjału Polski w zakresie produkcji biometanu w nadchodzących latach.

Praca wykonana w ramach projektu IDUB D2 9649 (2024–2025).

tion potential is now comparable to Germany, and the use of agricultural waste for biogas fits well into the circular economy goals. Unlike many other renewables, biogas/biomethane also provides stable energy output independent of weather and time of day. Together, these factors, such as policy support, resource availability, and operational stability, favour the rapid growth of biomethane in the Polish energy mix.

Biogas upgrading is most performed via physical scrubbing (water wash), chemical scrubbing (amine, alkaline), or membrane separation. Recent research and development of these technologies has driven significant process improvements, enabling high purity biomethane production with much lower energy demand than in the past. In this study, membrane separation proved to be a viable route to meet Poland's grid and regulatory quality requirements. In particular, the three-stage membrane system (S3) produced the highest CH₄ purity (~99.5% mol) and the lowest methane losses. Process efficiency could be further increased by using next generation membranes with higher CH₄/CO₂ selectivity. Polyimide membranes were chosen in simulations for their cost-effectiveness, availability, and durability.

Quantitatively, the benefit of multistage membranes is evident. For example, at 30 bar the three-stage design achieved roughly 99.5% mol CH_4 with only ~12.4% CH_4 in the waste (permeate) stream, while the single-stage system (S1) reached about 99.2% mol CH_4 with ~30.9% CH_4 slip (at a lower pressure of 15 bar, S1 produced only 91.85% mol CH_4). This shows that adding separation stages greatly reduces methane losses. Such high-purity operation requires more compression energy (additional compressors).

To inject biomethane into the existing natural gas grid, it is essential to match the technical specifications and requirements of the gas network. This means adjusting the biomethane composition and calorific value to meet gas requirements. In some cases, additional technical solutions (such as mixing or enrichment) may be needed to comply with operator standards, so long as the final gas meets all operational obligations. Attention to these details, combined with advances in upgrading technology and supportive policies, will be key to realizing Poland's biomethane potential in the coming years.

This work was done as part of a project IDUB D2 9649 (2024–2025).

Received/Otrzymano: 31-08-2025 Reviewed/Zrecenzowano: 03-09-2025 Accepted/Zaakceptowano: 10-09-2025 Published/Opublikowano: 18-09-2025

przemysł 104/9 (2025)

- M.U. Khan, J.T.E. Lee, M.A. Bashir, P.D. Dissanayake, Y.S. Ok, Y.W. Tong, M.A. Shariati, S. Wu, B.K. Ahring, *Renew. Sustain. Energy Rev.* 2021, **149**, 111343.
- [2] N. Abdalla, S. Bürck, H. Fehrenbach, S. Köppen, T.J. Staigl, *Heidelberg: Institut für Energie-und Umweltforschung Heidelberg GmbH* 2022.
- [3] IEA, 2025, Outlook for Biogas and Biomethane A global geospatial assessment.
- [4] G. Rosłonek, Gaz Woda Techn. Sanit. 2021, 5, 2.
- [5] P. Gkotsis, P. Kougias, M. Mitrakas, A. Zouboulis, *Int. J. Hydrogen Energy* 2023, **48**, nr10, 3965.
- [6] J. Holewa, E. Kukulska-Zając, M. Pęgielska, Nafta-Gaz 2012, 8, 523.
- [7] M. Łaciak, Bezpieczeństwo eksploatacji urządzeń, instalacji i sieci gazowych, Tarbonus, Kraków 2025.
- [8] A. Wróblewska, *Nafta-Gaz* 2022, **78**, nr 11, 815.
- [9] D. Schröer, L. Herlicka, A. Heinold, U. Latacz-Lohmann, F. Meisel, J. Cleaner Prodn. 2024, 452, 142049.
- [10] L. Marsico, A. Brunetti, E. Catizzone, M. Migliori, G. Barbieri, *Renew. Energy* 2025, **254**, 123693.
- [11] W. Grządzielski, Rynek Energii 2021, **1**, 152.
- [12] S. Kuczyński, K. Liszka, M. Łaciak, A. Olijnyk, A. Szurlej, *Energies* 2019, 12, nr 23, 4511.
- [13] A. Saferna, P. Saferna, S. Kuczyński, M. Łaciak, A. Szurlej, T. Włodek, Energies 2021, 14, nr 17, 5568.
- [14] M. Wiśniecka, J. Holewa-Rataj, E. Kukulska-Zając, *Instal* 2016, **11**, 38.
- [15] R. Adamiak, Rynek Biogazu Biometanu 2025, 5, nr 115, 24.
- [16] A. Kośla, S. Brzęczkowski, D. Wilczyńska, Rynek Biogazu Biometanu 2025, 5, nr 115, 28.
- [17] A. Barczyński, Wiad. Naft. Gazown. 2021, 24.
- [18] Rozporządzenie Ministra Klimatu i Środowiska z dnia 28 marca 2024 r. zmieniające rozporządzenie w sprawie szczegółowych warunków funkcjonowania systemu gazowego, *Dz.U.* 2024, poz. 517.
- [19] S.C. Eichmann, J. Kiefer, J. Benz, T. Kempf, A. Leipertz, T. Seeger, *Measur. Sci. Technol.* 2014, **25**, nr 7, 075503.
- [20] S. Kuczyński, K. Kogut, Wiad. Naft. Gazown. 2023, 26, 14.
- [21] M. Łaciak, W. Panek, Przem. Chem. 2025, 104, nr 5, 560.
- [22] S. Kuczyński, M. Łaciak, C. Spyra, A. Szurlej, P. Wnęk, *Przem. Chem.* 2023, **102**, nr 6, 595.
- [23] S. Kuczyński, S. Nagy, C. Spyra, A. Szurlej, P. Wnęk, *Przem. Chem.* 2019, 98. nr 12, 2000.
- [24] M. Prussi, A. Julea, L. Lonza, C. Thiel, Energy Strategy Rev. 2021, 33, 100612.
- [25] P. Filanowski, Gaz Woda Techn. Sanit. 2022, **10**, 12.
- [26] M. Buffi, O. Hurtig, N. Scarlat, *Publications Office of the European Union* 2024, Luxembourg, JRC139485.
- [27] A. Korda-Burza, M. Figiel, J. Holewa-Rataj, *Nafta-Gaz* 2022, **10**, 746.
- [28] G. Ferrari, Z. Shi, F. Marinello, A. Pezzuolo, J. Cleaner Prodn. 2024, 478, 143936.
- [29] S. Bakkaloglu, A. Hawkes, *Energy Environ. Sci.* 2024, **17**, nr 4, 1482.
- [30] F. Cignini, A. Genovese, F. Ortenzi, S. Valentini, A. Caprioli, *E3S Web Conf.* 2020, **197**, 08019.
- [31] S. Bakkaloglu, J. Cooper, A. Hawkes, One Earth 2022, 5, nr 6, 724.
- [32] B. Aghel, S. Behaein, S. Wongwises, M.S. Shadloo, *Biomass Bioenergy* 2022, **160**, 106422.

- [33] Urząd Regulacji Energetyki, https://www.ure.gov.pl/pl/oze/potencjal-krajowy-oze/8108,Instalacje-odnawialnych-zrodel-energii-stan-na-31-marca-2025-r.html, dostęp 25 sierpnia 2025 r.
- [34] Krajowy Ośrodek Wsparcia Rolnictwa, www.gov.pl/web/kowr/dane-dotyczace-dzialalnosci-wytworcow-biogazu-rolniczego, dostęp 25 sierpnia 2025 r.
- [35] J. Holewa-Rataj, Z. Kukulska-Zając, Nafta Gaz 2022, 12, 872.
- [36] W. Żelisko, Tyg. Gosp. PIE 2025, 20.
- [37] S. Alberici, W. Grimme, G. Toop, Production potentials in the member states and outlook to 2050, 2022.
- [38] Krajowy Plan w dziedzinie Energii i Klimatu do 2030 r., Załącznik nr 3, (październik 2024 r.) https://www.gov.pl/attachment/f711ea22-e3e5-4492-b8e6-c80a1d5c64ee , dostęp 25 sierpnia 2025 r.
- [39] A. Barczyński, P. Barczyński, Wiad. Naft. Gazown. 2024, 27, 15.
- [40] K.J. Chmielowski, Wiad. Naft. Gazown. 2023, 26, 6.
- [41] Z. Rogala, M. Stanclik, D. Łuszkiewicz, Z. Malecha, M. Chorowski, *Rynek Energii* 2023, **1**, nr 164, 40.
- [42] J. Dach, Raport biogaz i biometan w Polsce 2024, 22.
- [43] M. Nocoń, *Gaz Woda Techn. Sanit.* 2023, **2**, 9.
- [44] P. Marconi, L. Rosa, Renew. Sustain. Energy Rev. 2023, 187, 113697.
- [45] M. Podgórska, P. Narloch, *Rynek Energii* 2022, **2**, 21.
- [46] C. Koutsiantzi, K. Koukovinos, A. Liatsou, P. Gkotsis, A. Zouboulis, M. Mitrakas, E.S. Kikkinides, *Environ. Res.* 2024, 245, 118080.
- [47] A. Roozitalab, F. Hamidavi, A. Kargari, *Gas Sci. Eng.* 2023, **114**, 204969.
- [48] N. Yusuf, F. Almomani, Energy 2023, 265, 126163.
- [49] J. Piskowska-Wasiak, Nafta-Gaz 2014, 2, nr 70, 94.
- [50] A.I. Adnan, M.Y. Ong, S. Nomanbhay, K.W. Chew, P.L. Show, *Bioengineering* 2019, **6**, nr 4, 92.
- [51] A. Kamiński, Gaz Woda Techn. Sanit. 2024, 5, 23.
- [52] S. Nagy, A. Barczyński, J. Blicharski, W. Duliński, M. Łaciak, J. Marszałek, J. Ślizowski, Vademecum gazownika, t. 1, SITPNiG, Kraków 2014.
- [53] M. del Rosario Rodero, R. Muñoz, A. González-Sánchez, H.A. Ruiz, G. Quijano, *J. Environ. Chem. Eng.* 2024, **12**, nr 5, 114106.
- [54] M.M. Mala, A. Tallam, S.P. Nandala, S. Chenna, N.V. Choudary, S. Sridhar, J. Cleaner Prodn. 2025, 522, 146322.
- [55] N. Jusoh, T.N.A.T. Hassan, N.H. Suhaimi, M. Mubashir, Sep. Purif. Technol. 2025, 373, 133466.
- [56] M. Scholz, T. Melin, M. Wessling, Renew. Sustain. Energy Rev. 2013,17, 199.
- [57] G. Aguilloso, K. Arpia, M. Khan, Z.A. Sapico, E.C.R. Lopez, *Eng. Proc.* 2024, **67**, 57.
- [58] W. Tomczak, M. Gryta, M. Daniluk, S. Żak, Membranes 2024, 14, nr 4, 80.
- [59] N. Fajrina, N. Yusof, A.F. Ismail, F. Aziz, M.R. Bilad, M. Alkahtani, J. Environ. Chem. Eng. 2023, 11, nr 3, 110235.
- [60] A. Francisco López, T. Lago Rodríguez, S. Faraji Abdolmaleki, M. Galera Martínez, P.M. Bello Bugallo, Appl. Sci. 2024, 14, 2342.
- [61] M. Gustafsson, R. Meneghetti, F. Souza Marques, H. Trim, R. Dong, T. Al Saedi, S. Rasi, J. Thual, P. Kornatz, D. Wall, C. Berntsen, S. Saxegaard, K.A. Lyng, H.J. Nägele, S. Heaven, A. Bywater, *IEA Bioenergy: Task 37*, 2024, nr 2.
- [62] Technical Standard ST-IGG-3501:2019 by the Polish Chamber of Gas Industry, Quality and Technical Requirements for Biomethane Injected into the Distribution Network. Part 1: Quality Requirements.

www.sitpchem.org.pl

Stowarzyszenie Inżynierów i Techników Przemysłu Chemicznego